Citation: CHENG Xue-Li. Density Functional Theory Investigation on the Reaction Mechanisms of Ti (3F) with CH2Cl2 and CHCl3 to CH2=TiCl2 and HC÷TiCl3[J]. Chinese Journal of Structural Chemistry, ;2016, 35(2): 193-198. doi: 10.14102/j.cnki.0254-5861.2011-0862 shu

Density Functional Theory Investigation on the Reaction Mechanisms of Ti (3F) with CH2Cl2 and CHCl3 to CH2=TiCl2 and HC÷TiCl3

  • Corresponding author: CHENG Xue-Li, 
  • Received Date: 23 June 2015
    Available Online: 21 August 2015

    Fund Project: This work was financially supported by the National Natural Science Foundation of China (11174215) (11174215)the University Science and Technology Project of Shandong Province (No. J13LD05) (ZR2012BL10)

  • The reaction mechanisms of Ti (3F) + CH2Cl2 → CH2=TiCl2 and Ti (3F) + CHCl3 → HC÷TiCl3 were investigated with Gaussian 03 program package at the B3PW91/6-311++G(d,p) level. The computational results revealed that: 1) Both reaction systems are initiated by Ti (3F) atom attacking the C atom of CH2Cl2 and CHCl3 to activate a C-Cl bond; 2) Both reaction systems were carried out via triplet reaction channels; 3) CH2=TiCl2 has singlet and triplet isomers, and the singlet one is more stable; 4) The HOMO of CH2=TiCl2(S) illustrates a π-bonding interaction between C and Ti; 5) Only singlet HC÷TiCl3 was located, and the Mülliken atomic spin densities show that the two single electrons are mostly on the C atom.
  • 加载中
    1. [1]

      (1) Hippler, M. Quantum chemical study and infrared spectroscopy of hydrogen-bonded CHCl3-NH3 in the gas phase. J. Chem. Phys. 2007, 127, 084306-10.

    2. [2]

      (2) Chen, Y.; Wen, Y.; Zhou, J.; Zhou, Q.; Jan Vymazal, J.; Kuschk, P. Transformation of chloroform in model treatment wetlands: from mass balance to microbial analysis. Environ. Sci. Technol. 2015, 49, 6198-6205.

    3. [3]

      (3) Yan, T. H.; Tsai, C. C.; Chien, C. T.; Cho, C. C.; Huang, P. C. Dichloromethane activation. Direct methylenation of ketones and aldehydes with CH2Cl2 promoted by Mg/TiCl4/THF. Org. Lett. 2004, 6, 4961-4963.

    4. [4]

      (4) Abou-Chahine, F.; Preston, T. J.; Dunning, G. T.; Orr-Ewing, A. J.; Greetham, G. M.; Clark, I. P.; Towrie, M.; Reid, S. A. Photoisomerization and photoinduced reactions in liquid CCl4 and CHCl3. J. Phys. Chem. A 2013, 117, 13388-13398.

    5. [5]

      (5) Vila, F. D.; Strubbe, D. A.; Takimoto, Y.; Andrade, X.; Rubio, A.; Louie, S. G.; Rehr, J. J. Basis set effects on the hyperpolarizability of CHCl3: Gaussian-type orbitals, numerical basis sets and real-space grids. J. Chem. Phys. 2010, 133, 034111-10.

    6. [6]

      (6) Lemieux, P. M.; Ryan. J. V.; Bass, C.; Barat, R. Emissions of trace products of incomplete combustion from a pilot-scale incinerator secondary combustion chamber. J. Air Waste Manag. Assoc. 1996, 46, 309-316.

    7. [7]

      (7) Preis, S.; Kallas, J. Gas-phase degradation of CCl4, CHCl3 and CH2Cl2 over metallic Fe. Environ. Chem. Lett. 2004, 2, 9-13.

    8. [8]

      (8) Dias, H. V. R.; Browning, R. G.; Polach, S. A.; Diyabalanage, H. V. K.; Lovely, C. J. Activation of alkyl halides via a silver-catalyzed carbene insertion process. J. Am. Chem. Soc. 2003, 125, 9270-9271.

    9. [9]

      (9) Csok, Z.; Vechorkin, O.; Harkins, S. B.; Scopelliti, R.; Hu, X. Nickel complexes of a pincer NN2 ligand: multiple carbon-chloride activation of CH2Cl2 and CHCl3 leads to selective carbon-carbon bond formation. J. Am. Chem. Soc. 2008, 130, 8156-8157.

    10. [10]

      (10) Li, G. B.; Liu, J. M.; Yu, Z. Q.; Wang, W.; Su, C. Y. Assembly of a 1D coordination polymer through in situ formation of a new ligand by double C-C coupling on CHCl3 under solvothermal conditions. Inorg. Chem. 2009, 48, 8659-8661.

    11. [11]

      (11) Lin, K. W.; Tsai, C. H.; Hsieh, I. L.; Yan, T. H. New, general, and practical preparation of methyl ketones via the direct coupling of amides with CH2Cl2 promoted by TiCl4/Mg. Org. Lett. 2008, 10, 1927-1930.

    12. [12]

      (12) Lyon, J. T.; Andrews, L. An infrared spectroscopic and theoretical study of group 4 transition metal CH2=MCl2 and HC÷MCl3 complexes. Organometallics 2007, 26, 332-339.

    13. [13]

      (13) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Oritz, J. V.; Stefanov, B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian, Inc., Wallingford CT 2004, Gaussian 03, Revision C.02.

    14. [14]

      (14) Perdew, J. P.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 1996, 54, 16533-16533.

    15. [15]

      (15) Burke, K.; Perdew, J. P.; Wang, Y. Electronic Density Functional Theory: Recent Progress and New Directions, ed. Donson, J. F.; Vignale, G.; Das M. P. Plenum Press, New York 1998.

    16. [16]

      (16) Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098-3100.

    17. [17]

      (17) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671-6687.

    18. [18]

      (18) Gonzalez, C.; Schlegel, H. B. Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 1990, 94, 5523-5527.

    19. [19]

      (19) Gonzalez, C.; Schlegel, H. B. An improved algorithm for reaction path following. J. Chem. Phys. 1989, 90, 2154-2159.

    20. [20]

      (20) Pandey, L. B.; Aikens, C. M. Theoretical investigation of the electrochemical mechanism of water splitting on a titanium oxide cluster model. J. Phys. Chem. A 2012, 116, 526-535.

    21. [21]

      (21) Schwarz, A. D.; Nova, A.; Clot, E.; Mountford, P. Titanium tert-butoxyimido compounds. Inorg. Chem. 2011, 50, 12155-12171.

    22. [22]

      (22) Flisak, Z. Thermodynamics of titanium and vanadium reduction in non-aqueous environment calculated at various levels of theory. J. Phys. Chem. A 2012, 116, 1464-1468.

    23. [23]

      (23) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648-5652.

  • 加载中
    1. [1]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    2. [2]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    3. [3]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    4. [4]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    5. [5]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    6. [6]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    7. [7]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    8. [8]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    9. [9]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    10. [10]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    11. [11]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    12. [12]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    13. [13]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    16. [16]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    17. [17]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    18. [18]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    19. [19]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    20. [20]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

Metrics
  • PDF Downloads(0)
  • Abstract views(697)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return