Citation: WANG Guo, ZHANG Xiao-Han, ZHAO Tian-Tian, GE Hong-Yu. Theoretical Investigation on Self-passivation in Bare Zigzag Phosphorene Nanoribbons[J]. Chinese Journal of Structural Chemistry, ;2016, 35(2): 185-192. doi: 10.14102/j.cnki.0254-5861.2011-0861 shu

Theoretical Investigation on Self-passivation in Bare Zigzag Phosphorene Nanoribbons

  • Corresponding author: WANG Guo, 
  • Received Date: 23 June 2015
    Available Online: 8 September 2015

    Fund Project: This work is supported by the National Natural Science Foundation of China (No. 21203127) (No. 21203127) the Beijing Higher Education Young Elite Teacher Project (YETP1629) (YETP1629)

  • Several bare zigzag phosphorene nanoribbons with odd number of atoms in the direction perpendicular to the extended line are investigated by using HSE06 density functional theory. These nanoribbons are as stable as those with even number of atoms. Primitive cells of the nanoribbons are metals, while edge self-passivation and distortion in the supercell structures cause metal-semiconductor transition. The band gaps of semiconducting nanoribbons are around 0.4 eV, which is enough for high on/off ratio in device operation. Compared to the conduction bands, the valence bands have smaller deformation potential constants and larger band width. Thus, the hole mobilities of the nanoribbons (103 cm2·V-1·s-1) are one order higher than the electron mobilities. Bare zigzag phosphorene nanoribbons with odd number of atoms can also be candidates for small-size high-speed electronic devices.
  • 加载中
    1. [1]

      (1) Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. 2005, 102, 10451-10453.

    2. [2]

      (2) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197-200.

    3. [3]

      (3) Zhang, Y.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201-204.

    4. [4]

      (4) Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100, 016602-4.

    5. [5]

      (5) Son, Y. W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803-4.

    6. [6]

      (6) Han, M. Y.; Özyilmaz, B.; Zhang, Y.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805-4.

    7. [7]

      (7) Li, L.; Yu, Y.; Ye, G. J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X. H.; Zhang, Y. Black phosphorus field-effect transistors. Nature Nanotechnol. 2014, 9, 372-377.

    8. [8]

      (8) Tran, V.; Li, Y. Scaling laws for the band gap and optical response of phosphorene nanoribbons. Phys. Rev. B 2014, 89, 245407-5.

    9. [9]

      (9) Guo, H.; Lu, N.; Dai, J.; Wu, X.; Zeng, X. C. Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers. J. Phys. Chem. C 2014, 118, 14051-14059.

    10. [10]

      (10) Han, X.; Stewart, H. M.; Shevlin, S. A.; Catlow, C. R. A.; Guo, Z. X. Strain and orientation modulated bandgaps and effective masses of phosphorene nanoribbons. Nano. Lett. 2014, 14, 4607-4614.

    11. [11]

      (11) Ramasubramaniam, A.; Muniz, A. R. Ab initio studies of thermodynamic and electronic properties of phosphorene nanoribbons. Phys. Rev. B 2014, 90, 085424-7.

    12. [12]

      (12) Xie, J.; Si, M. S.; Yang, D. Z.; Zhang, Z. Y.; Xue, D. S. A theoretical study of blue phosphorene nanoribbons based on first-principles calculations. J. Appl. Phys. 2014, 116, 073704-5.

    13. [13]

      (13) Zhu, Z.; Li, C.; Yu, W.; Chang, D.; Sun, Q.; Jia, Y. Magnetism of zigzag edge phosphorene nanoribbons. Appl. Phys. Lett. 2014, 105, 113105-4.

    14. [14]

      (14) Zhang, J.; Liu, H. J.; Cheng, L.; Wei, J.; Liang, J. H.; Fan, D. D.; Shi, J.; Tang, X. F.; Zhang, Q. J. Phosphorene nanoribbon as a promising candidate for thermoelectric applications. Sci. Rep. 2014, 4, 6452-7.

    15. [15]

      (15) Li, W. F.; Zhang, G.; Zhang, Y. W. Electronic properties of edge-hydrogenated phosphorene nanoribbons: a first-principles study. J. Phys. Chem. C 2014, 118, 22368-22372.

    16. [16]

      (16) Peng, X. H.; Copple, A.; Wei, Q. Edge effects on the electronic properties of phosphorene nanoribbons. J. Appl. Phys. 2014, 116, 144301-6.

    17. [17]

      (17) Carvalho, A.; Rodin, A. S.; Neto, A. H. C. Phosphorene nanoribbons. EPL 2014, 108, 47005-6.

    18. [18]

      (18) Xu, L. C.; Song, X. J.; Yang, Z.; Cao, L.; Liu, R. P.; Li, X. Y. Phosphorene nanoribbons: passivation effect on bandgap and effective mass. Appl. Surf. Sci. 2015, 324, 640-644.

    19. [19]

      (19) Sisakht, E. T.; Zare, M. H.; Fazileh, F. Scaling laws of band gaps of phosphorene nanoribbons: a tight-binding calculation. Phys. Rev. B 2015, 91, 085409-8.

    20. [20]

      (20) Du, Y.; Liu, H.; Xu, B.; Sheng, L.; Yin, J.; Duan, C. G.; Wan, X. Unexpected magnetic semiconductor behavior in zigzag phosphorene nanoribbons driven by half-filled one dimensional band. Sci. Rep. 2015, 5, 8921-5.

    21. [21]

      (21) Yao, Q.; Huang, C.; Yuan, Y.; Liu, Y.; Liu, S.; Deng, K.; Kan, E. Theoretical prediction of phosphorene and nanoribbons as fast-charging Li ion battery anode materials. J. Phys. Chem. C 2015, 119, 6923-6928.

    22. [22]

      (22) Liu, Y. S.; Zhang, X.; Yang, X. F.; Hong, X. K.; Feng, J. F.; Si, M. S.; Wang, X. F. Spin caloritronics of blue phosphorene nanoribbons. Phys. Chem. Chem. Phys. 2015, 17, 10462-10467.

    23. [23]

      (23) Jia, T. T.; Sun, B. Z.; Lin, H. X.; Li, Y.; Chen, W. K. Bonding of hydroxyl and epoxy groups on graphene: insights from density functional calculations. Chin. J. Struct. Chem. 2013, 32, 1475-1484.

    24. [24]

      (24) Guan, X. M.; Zhang, H. Y.; Zhang, M.; Luo, Y. H. Opening band gap of graphene by chemical doping: a first principles study. Chin. J. Struct. Chem. 2014, 33, 513-518.

    25. [25]

      (25) Ge, H. Y.; Wang, G. Electronic properties of armchair graphene nanoribbons with oxygen-terminated edges: a density functional study. Chin. J. Struct. Chem. 2015, 34, 641-649.

    26. [26]

      (26) Dovesi, R.; Orlando, R.; Erba, A.; Zicovich-Wilson, C. M.; Civalleri, B.; Casassa, S.; Maschio, L.; Ferrabone, M.; De La Pierre, M.; D'Arco, P.; Noël, Y.; Causà, M.; Rérat, M.; Kirtman, B. CRYSTAL14: a program for the ab initio investigation of crystalline solids. Int. J. Quantum Chem. 2014, 114, 1287-1317.

    27. [27]

      (27) Dovesi, R.; Saunders, V. R.; Roetti, C.; Orlando, R.; Zicovich-Wilson, C. M.; Pascale, F.; Civalleri, B.; Doll, K.; Harrison, N. M.; Bush, I. J.; D'Arco, Ph.; Llunell, M.; Causà, M.; Noël, Y. CRYSTAL14 User's Manual. University of Torino, Torino 2014.

    28. [28]

      (28) Schwierz, F. Graphene transistors. Nature Nanotechnol. 2010, 5, 487-496.

    29. [29]

      (29) Krukau, A. V.; Vydrov, O. A.; Izmaylov, A. F.; Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006, 125, 224106-5.

    30. [30]

      (30) Henderson, T. M.; Paier, J.; Scuseria, G. E. Accurate treatment of solids with the HSE screened hybrid. Phys. Status Solidi B 2011, 248,767-774.

    31. [31]

      (31) Peintinger, M. F.; Oliveira, D. V.; Bredow, T. Consistent gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations. J. Comp. Chem. 2012, 34, 451-459.

    32. [32]

      (32) Demichelis, R.; Noël, Y.; D'Arco, P.; Rérat, M.; Zicovich-Wilson, C. M.; Dovesi, R. Properties of carbon nanotubes: an ab initio study using large Gaussian basis sets and various DFT functionals. J. Phys. Chem. C 2011, 115, 8876-8885.

    33. [33]

      (33) Pierre, M. D. L.; Karamanis, P.; Baima, J.; Orlando, R.; Pouchan, C.; Dovesi, R. Ab initio periodic simulation of the spectroscopic and optical properties of novel porous graphene phases. J. Phys. Chem. C 2013, 117, 2222-2229.

    34. [34]

      (34) Grimvall, G. The Electron-phonon Interaction in Metals. North-Holland Publishing Company, Amsterdam 1981.

    35. [35]

      (35) Bardeen, J.; Shockley, W. Deformation potentials and mobilities in non-polar crystals. Phys. Rev. 1950, 80, 72-80.

    36. [36]

      (36) Wilson, E. G. Electron motion in one-dimensional semiconductors. J. Phys. C: Solid State Phys. 1982, 15, 3733-3755.

    37. [37]

      (37) Wang, G.; Huang, Y. Theoretical study on the co-crystal composed of poly(diiododiacetylene) and bis(nitrile) oxalamide. J. Phys. Chem. Solids 2007, 68, 2003-2007.

    38. [38]

      (38) Xi, J.; Long, M.; Tang, L.; Wang, D.; Shuai, Z. First-principles prediction of charge mobility in carbon and organic nanomaterials. Nanoscale 2012, 4, 4348-4369.

    39. [39]

      (39) Wang, G. Effect of edge-hydrogen passivation and saturation on the carrier mobility of armchair graphene nanoribbons. Chem. Phys. Lett. 2012, 533, 74-77.

    40. [40]

      (40) Bai, H.; Zhu, Y.; Qiao, W.; Huang, Y. Structures, stabilities and electronic properties of graphdiynenanoribbons. RSC Adv. 2011, 1, 768-775.

    41. [41]

      (41) Long, M.; Tang, L.; Wang, D.; Li, Y.; Shuai, Z. Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: theoretical predictions. ACS Nano. 2011, 5, 2593-2600.

    42. [42]

      (42) Ge, H. Y.; Wang, G.; Liao, Y. A theoretical prediction on huge hole and electron mobilities of 6,6,18-graphdiyne nanoribbons. Chem. Phys. Lett. 2015, 633, 30-34.

    43. [43]

      (43) Wang, G. Do silicene nanoribbons have high carrier mobilities?. EPL 2013, 101, 27005-6.

    44. [44]

      (44) Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    4. [4]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    5. [5]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    6. [6]

      Jian Ji Jie Yan Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360

    7. [7]

      Jiajing Wu Ru-Ling Tang Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291

    8. [8]

      Jing ChenPeisi XiePengfei WuYu HeZian LinZongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895

    9. [9]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    10. [10]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    11. [11]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    12. [12]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    13. [13]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    14. [14]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    15. [15]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    16. [16]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    17. [17]

      Zhiyu YuXiang LuoCheng ZhangXin LuXiaohui LiPan LiaoZhongqiu LiuRong ZhangShengtao WangZhiqiang YuGuochao Liao . Mitochondria-targeted carrier-free nanoparticles based on dihydroartemisinin against hepatocellular carcinoma. Chinese Chemical Letters, 2024, 35(10): 109519-. doi: 10.1016/j.cclet.2024.109519

    18. [18]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    19. [19]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    20. [20]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

Metrics
  • PDF Downloads(0)
  • Abstract views(586)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return