Citation: WANG Gui-Xian, XIA Yan, WANG Xiao-Juan, FENG Yun-Long. DNA-binding Studies of Two Silver(I)-sulfonate Complexes Constructed by In Situ Reaction[J]. Chinese Journal of Structural Chemistry, ;2016, 35(2): 219-226. doi: 10.14102/j.cnki.0254-5861.2011-0841 shu

DNA-binding Studies of Two Silver(I)-sulfonate Complexes Constructed by In Situ Reaction

  • Corresponding author: FENG Yun-Long, 
  • Received Date: 10 June 2015
    Available Online: 11 November 2015

    Fund Project: This project was supported by the National Natural Science Foundation of China (No. 21173197) (No. 21173197)

  • Two silver(I)-sulfonate complexes, [Ag(NO3)(4,4'-bipy)][Ag(HL)(4,4'-bipy)]·2H2O (1) and [Ag(H2O)(4,4'-bipy)][AgL(4,4'-bipy)]·2H2O (2), have been synthesized by in situ reaction (H2L = 2-formylbenzenesulfonic acid, 4,4'-bipy = 4,4'-bipyridine). 1 displays two parallel 1D chains expending to a 3D supramolecule by π…π interactions and O-H…O hydrogen bonds, in which the [Ag(NO3)] or [Ag(HL)] units are joined by bridging 4,4'-bipy molecules, respectively. The interactions between the complexes and DNA were studied by means of fluorescence spectra and surface-enhanced Raman scattering (SERS) spectra. The special configuration and intercalation effects between 1 and DNA are stronger than that between 2 and DNA.
  • 加载中
    1. [1]

      (1) (a) Kukushkin, V. P.; Pombeiro, A. J. L. Additions to metal-activated organonitriles. Chem. Rev. 2002, 102, 1771-1802.

    2. [2]

      (b) Wei, Q. H.; Zhang, L.Y.; Yin, G. Q.; Shi, L. X.; Chen, Z. N. Luminescent heteronuclear AuI5AgI8 complexes of {1,2,3-C6(C6H4R-4)33- (R = H, CH3, But) by cyclotrimerization of arylacerylides. J. Am. Chem. Soc. 2004, 126, 9940-9941.

    3. [3]

      (c) Zhang, J. P.; Zheng, S. L.; Huang, X. C.; Chen, X. M. Two unprecedented 3-connected three-dimensional networks of copper(I) triazolates: in situ formation of ligands by cycloaddition of nitriles and ammonia. Angew. Chem. Int. Ed. 2004, 43, 206-209.

    4. [4]

      (d) Cheng, J. K.; Yao, Y. G.; Zhang, J.; Li, Z. J.; Cai, Z. W.; Zhang, X. Y.; Chen, Z. N.; Chen, Y. B.; Kang, Y.; Qin, Y. Y.; Wen, Y. H. A simultaneous redox, alkylation, self-assembly reaction under solvothermal conditions afforded a luminescent copper(I) chain polyner constructed of Cu3I4- and ETS-4-C5H4N+Et components (Et = CH3CH2). J. Am. Chem. Soc. 2004, 126, 7796-7797.

    5. [5]

      (e) Liu, J. L.; Chen, Y. C.; Li, Q. W.; Gómez-Coca, S.; Aravena, D.; Ruiz, E.; Lin, W. Q.; Leng, J. D.; Tong, M. L. Two 3d-4f nanomagnets formed via a two-step in situ reaction of picolinaldehyde. Chem. Commun. 2013, 49, 6549-6551.

    6. [6]

      (f) Wang, X.; Yang, J.; Zhang, L.; Liu, F.; Dai, F.; Sun, D. Synthesis of two triarylboron-functionalized metal-organic frameworks: in situ decarboxylic reaction, structure, photoluminescence, and gas adsorption properties. Inorg. Chem. 2014, 53, 11206-11212.

    7. [7]

      (g) Tang, Y. Z.; Zhou, M.; Huang, J.; Tan, Y. H.; Wu, J. S.; Wen, H. R. In situ synthesis and ferroelectric, SHG response, and luminescent properties of a novel 3D acentric zinc coordination polymer. Inorg. Chem. 2013, 52, 1679-1681.

    8. [8]

      (2) (a) Dalrymple, S. D.; Shimizu, G. K. H. An open channel coordination framework sustained by cooperative primary and secondary sphere interactions. Chem. Commun. 2002, 2224-2225.

    9. [9]

      (b) Dalrymple, S. A.; Parvez, M.; Shimizu, G. K. H. Intra- and intermolecular second-sphere coordination chemistry: formation of capsules, half-capsules, and extended structures with hexaaquo- and hexaamminemetal ions. Inorg. Chem. 2002, 41, 6986-6996.

    10. [10]

      (c) Ma, J. F.; Yang, J.; Li, S. L.; Song, S. Y.; Zhang, H. J.; Wang, H. S.; Yang, K. Y. Two coordination polymers of Ag(I) with 5-sulfosalicylic scid. Cryst. Growth Des. 2005, 5, 807-812.

    11. [11]

      (d) Kulynych, A. D.; Shimizu, G. K. H. A pseudo-honeycomb coordination net formed with 5-sulfoisophthalic acid. CrystEngComm. 2002, 18, 102-105.

    12. [12]

      (e) Wulfsberg, G.; Parks, K. D.; Rutherford, R.; Jackson, D. J.; Jones, F. E.; Derrick, D.; Iisley, W. Weakly coordinating anions: crystallographic and nqr studies of halogen-metal bonding in silver, thallium, sodium, and potassium halomethanesulfonates. Inorg. Chem. 2002, 41, 2032-2040.

    13. [13]

      (f) May, L. J.; Shimizu, G. K. H. Highly selective intercalation of primary amines in a continuous layer Ag coordination network. Chem. Mater. 2005, 17, 217-220.

    14. [14]

      (g) Shimizu, K. H.; Vaidhyanathan, R.; Tay, J. M. Phosphonate and sulfonate metal organic frameworks. Chem. Soc. Rev. 2009, 38, 1430-1449.

    15. [15]

      (3) Zheng, X. F.; Zhu, L. G. Influence of different N-donor ligands on the supramolecular architectures and abundant weak interactions of silver 2-sulfobenzoate polymers. Cryst. Growth Des. 2009, 9, 4407-4414.

    16. [16]

      (4) (a) Shimizu, G. K. H.; Enright, G. D.; Ratcliffe, C. L.; Rego, G. S.; Reid, J. L.; Ripmeester, J. A. Silver sulfonates: an unexplored class of layered solids. Chem. Mater. 1998, 10, 3282-3283.

    17. [17]

      (b) Melcer, N. J.; Enright, G. D.; Ripmeester, J. A.; Shimizu, G. K. H. The effects of anion variation and ligand derivatization on silver coordination networks based upon weaker interactions. Inorg. Chem. 2001, 40, 4641-4648.

    18. [18]

      (c) Li, F. F.; Ma, J. F.; Song, S. Y.; Yang, J.; Liu, Y. Y.; Su, Z. M. Influence of neutral ligands on the structures of silver(I) sulfonates. Inorg. Chem. 2005, 44, 9374-9383.

    19. [19]

      (h) Wu, H.; Dong, X. W.; Ma, J. F.; Liu, H. Y.; Yang, J.; Bai, H. Y. Influence of anionic sulfonate-containing and nitrogen-containing mixed-ligands on the structures of silver coordination polymers. Dalton Trans. 2009, 3162-3174.

    20. [20]

      (5) (a) He, Y. H.; Feng, Y. L.; Lan, Y. Z.; Wen, Y. H. Syntheses, structures and photoluminescence of four d10 metal-organic frameworks constructed from 3,5-bis-oxyacetate-benzoic acid. Cryst. Growth Des. 2008, 8, 3586-3594.

    21. [21]

      (b) Yuan, H. Y.; Han, M. M.; Jiang, X. R.; Jiang, Z. G.; Feng, Y. L. Six new coordination polymers constructed by 3-carboxyl-5-oxycarboxymethylpyridinio-1-carboxylate: crystal structures, topologies, photoluminescent and magnetic properties. J. Solid State Chem. 2013, 202, 191-199.

    22. [22]

      (c) Jiang, X. R.; Wang, X. J.; Feng, Y. L. Two new nickel(II) complexes constructed by 2-carboxymethlsulfanyl incotinic acid different N-containing ligands. Inorg. Chim. Acta 2012, 383, 38-45.

    23. [23]

      (6) (a) Li, L. Z.; Zhao, C. T.; Ji, H. W.; Yu, Y. H.; Guo, G. Q.; Chao, H. Synthesis, crystal structure and nuclease activity of a Schiff base copper(II) complex. Inorg. Biochem. 2005, 99, 1076-1082 (b) Keck, M. V.; Lippard, S. J. Unwinding of supercoiled DNA by platinum-ethidium and related complexes. J. Am. Chem. Soc. 1992, 114, 3386-3390.

    24. [24]

      (c) Hartshorn, R. M.; Barton, J. K. A molecular light switch for DNA: Ru(bpy)2(dppz)2+. J. Am. Chem. Soc. 1990, 112, 4960-4962.

    25. [25]

      (d) Nordell, P.; Lincoln, P. Mechanism of DNA threading intercalation of binuclear Ru complexes: uni- or bimolecular pathways depending on ligand structure and binding density. J. Am. Chem. Soc. 2005, 127, 9670-9671.

    26. [26]

      (e) Maheswari, P. U.; Roy, S.; Dulk, H.; Barends, S.; Wezel, G.; Kozlevcar, B.; Gamez, P.; Reedijk, J. The square-planar cytotoxic [CuII(pyrimol)Cl] complex acts as an efficient DNA cleaver without reductant. J. Am. Chem. Soc. 2006, 128, 710-711.

    27. [27]

      (7) (a) Dardlier, P. J.; Holmlin, R. E.; Barton, J. K. Thymine repair DNA helix. Science 1997, 275, 1465-1468.

    28. [28]

      (b) Zhang, Q. L.; Liu, J. G.; Chao, H.; Xue, G. Q.; Ji, L. N. DNA-binding and photocleavage studies of cobalt(III) polypyridyl complexes: [Co(phen)2IP]3+ and [Co(phen)2PIP]3+. J. Inorg. Biochem. 2001, 83, 49-55.

    29. [29]

      (c) Liu, J. G.; Ye, B. H.; Zhang, Q. L.; Zou, X. H.; Zhen, Q. X.; Tian, X.; Ji, L. N. Enantiomeric ruthenium(II) complexes binding to DNA: binding modes and enantioselectivit. Biol. Inorg. Chem. 2000, 5, 119-128.

    30. [30]

      (d) Ji, L. N.; Zou, X. H.; Liu,J. G.; Shape- and enantioselective interaction of Ru(II)/Co(III) polypyridyl complexes with DNA. Coord. Chem. Rev. 2001, 216, 513-536.

    31. [31]

      (8) Lee, P. C.; Meisel, D. Adsorption and surface-enhanced Raman of dyes on silver and gold sol. J. Phys. Chem. 1982, 86, 3391-3395.

    32. [32]

      (9) (a) Sheldrick, G. M. SHELXS 97, Program for the Solution of Crystal Structures. University of Göttingen, Germany 1997.

    33. [33]

      (b) Sheldrick, G. M. SHELXTL 97, Program for the Refinement of Crystal Structures. University of Göttingen, Germany 1997.

    34. [34]

      (10) Zhang, X. M. Hydro(solvo)thermal in situ ligand syntheses. Coord. Chem. Rev. 2005, 249, 1201-1219 and references therein.

    35. [35]

      (11) Hong, M. C.; Chen, L. Design and Construction of Coordination Polymers. John wiley & Sons, Inc., Hoboken, New Jersey. 2009, p4-5.

    36. [36]

      (12) (a) Baguley, B. C.; LeBret, M. Quenching of DNA-ethidium fluorescence by amsacrine and other antitumor agents: a possible electron-transfer effectet. Biochem. 1984, 23, 937-943.

    37. [37]

      (b) Lakowicz, J. R.; Webber, G. Quenching of fluorescence by oxygen. probe for structural fluctuations in macromolecules. Biochem. 1973, 12, 4161-4170.

  • 加载中
    1. [1]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    2. [2]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    3. [3]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    4. [4]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    5. [5]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    6. [6]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    7. [7]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    8. [8]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    9. [9]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    10. [10]

      Bei Li Zhaoke Zheng . In situ monitoring of the spatial distribution of oxygen vacancies at the single-particle level. Chinese Journal of Structural Chemistry, 2024, 43(10): 100331-100331. doi: 10.1016/j.cjsc.2024.100331

    11. [11]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    12. [12]

      Wu-Jian LongYang YuChuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943

    13. [13]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    14. [14]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    15. [15]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    16. [16]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

    17. [17]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    18. [18]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    19. [19]

      Xiaoyao MaJinling ZhangGe FangHe GaoJie GaoLi FuYuanyuan HouGang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823

    20. [20]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

Metrics
  • PDF Downloads(0)
  • Abstract views(574)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return