Citation: Xintian Xie,  Sicong Ma,  Yefei Li,  Cheng Shang,  Zhipan Liu. Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design[J]. University Chemistry, ;2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164 shu

Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design

  • Corresponding author: Zhipan Liu, zpliu@fudan.edu.cn
  • Received Date: 27 May 2024
    Revised Date: 14 August 2024

  • Integrating theoretical simulation courses into undergraduate education for chemistry and materials science is of great significance for cultivating modern chemistry talents. Using the simulation methods and software developed by our research group, we designed two simulation experiments: "Construction of the Potential Energy Surface for H2 Dissociation on the Cu(111) Surface" and "Characterization and Simulation of Acidity on Zeolite Molecular Sieve Surfaces". These experiments aim to deepen the undergraduates’ comprehension of theoretical simulations and highlight the transformative advancements driven by artificial intelligence technology.
  • 加载中
    1. [1]

      Lecun, Y.; Bengio, Y.; Hinton, G. Nature 2015, 521 (7553), 436.

    2. [2]

      Lawrence S.; Giles C. L.; Tsoi A. C.; Back A. D. IEEE Trans. Neural Netw. 1997, 8 (1), 98.

    3. [3]

      Krizhevsky, A.; Sutskever, I.; Hinton, G. E. Commun. ACM 2012, 60, 84.

    4. [4]

      Wang, H.; Zhang, L. F.; Han, J. Q.; E, W. N. Comput. Phys. Commun. 2018, 228, 178.

    5. [5]

      Dral, P. O. J. Comput. Chem. 2019, 40 (26), 2339.

    6. [6]

      Huang, S.-D.; Shang, C.; Kang, P.-L.; Zhang, X.-J.; Liu, Z.-P. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2019, 9, e1415.

    7. [7]

      Behler, J.; Parrinello, M. Phys. Rev. Lett. 2007, 98 (14), 146401.

    8. [8]

      Behler, J.; Martoňák, R.; Donadio, D.; Parrinello, M. Phys. Rev. Lett. 2008, 100 (18), 185501.

    9. [9]

      Shang, C.; Huang, S.-D.; Liu, Z.-P. J. Comput. Chem. 2019, 40 (10), 1091.

    10. [10]

      Huang, S.-D.; Shang, C.; Kang, P.-L.; Liu, Z.-P. Chem. Sci. 2018, 9 (46), 8644.

    11. [11]

      Kang, P.-L.; Yang, Z.-X.; Shang, C.; Liu, Z.-P. J. Chem. Theory Comput. 2023, 19 (21), 7972.

    12. [12]

      Shang, C.; Liu, Z.-P. J. Chem. Theory Comput. 2013, 9 (3), 1838.

    13. [13]

      Zhang, X.-J.; Liu, Z.-P. Phys. Chem. Chem. Phys. 2015, 17 (4), 2757.

    14. [14]

      Shang, C.; Liu, Z.-P. J. Chem. Theory Comput. 2010, 6 (4), 1136.

    15. [15]

      Zhang, X.-J.; Shang, C.; Liu, Z.-P. J. Chem. Theory Comput. 2013, 9 (12), 5745.

    16. [16]

      Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6 (1), 15.

    17. [17]

      Soler, J. M.; Artacho, E.; Gale, J. D.; Garcia, A.; Junquera, J.; Ordejon, P.; Sanchez-Portal, D. J. Phys.: Condens. Matter 2002, 14, 2745.

    18. [18]

      Plimpton, S. J. Comput. Phys. 1995, 117 (1), 1.

    19. [19]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford, CT, USA, 2009.

    20. [20]

      Hutter, J.; Iannuzzi, M.; Schiffmann, F.; Vandevondele, J. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2014, 4 (1), 15.

    21. [21]

      Database of Zeolite Structures. http://www.iza-structure.org/databases/ (accessed Feb. 12, 2025)

    22. [22]

      Ma, S.; Liu, Z.-P. Chem. Sci. 2022, 13 (18), 5055.

  • 加载中
    1. [1]

      Ping Li Chao Yin . Teaching Exploration and Practical Innovation of General Education Courses in the Context of Artificial Intelligence. University Chemistry, 2024, 39(10): 402-407. doi: 10.12461/PKU.DXHX202403075

    2. [2]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Exploration on the Integration Mode of Instrumental Analysis with Science and Education under the Background of Artificial Intelligence Era. University Chemistry, 2024, 39(8): 365-374. doi: 10.12461/PKU.DXHX202403014

    3. [3]

      Haolin Zhan Qiyuan Fang Jiawei Liu Xiaoqi Shi Xinyu Chen Yuqing Huang Zhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Networ. Acta Physico-Chimica Sinica, 2025, 41(2): 100017-. doi: 10.3866/PKU.WHXB202310045

    4. [4]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    5. [5]

      Jing Du Xi Yu Xiaofei Ma Wentao Zhao . Artificial Intelligence & Chemistry Course Construction. University Chemistry, 2024, 39(11): 65-71. doi: 10.12461/PKU.DXHX202403072

    6. [6]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    7. [7]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    8. [8]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    9. [9]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    10. [10]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    11. [11]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    12. [12]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    13. [13]

      Tongqi Ye Qi Wang Yuewen Ye Yanqing Wang Hongyang Zhou Xianghua Kong . Reflection on the Reform of Physical Chemistry Teaching under the Background of “Intelligent Chemical Engineering”. University Chemistry, 2024, 39(3): 167-173. doi: 10.3866/PKU.DXHX202308116

    14. [14]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    15. [15]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    16. [16]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    17. [17]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    18. [18]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    19. [19]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    20. [20]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

Metrics
  • PDF Downloads(0)
  • Abstract views(95)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return