Citation: Xingyuan Lu,  Yutao Yao,  Junjing Gu,  Peifeng Su. Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters[J]. University Chemistry, ;2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074 shu

Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters

  • Corresponding author: Peifeng Su, supi@xmu.edu.cn
  • Received Date: 7 May 2024
    Revised Date: 14 August 2024

  • Energy decomposition analysis (EDA) is a quantitative theoretical method for studying molecular interactions. It has been widely applied in various fields including molecule self-assembly, drug design, mechanism of chemical reactions, and development of force fields. The existing undergraduate chemistry curriculum, however, often provides superficial explanations of molecular interactions, sometimes with inconsistencies. To deepen undergraduates’ understanding of molecular interactions, this article briefly outlines the basic concepts of EDA and introduces the representative GKS-EDA method, along with its study of multi-body effects in hexamer water systems.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      Pearson, R. G. Chem. Rev. 1985, 85 (1), 41.

    4. [4]

      Hobza, P.; Havlas, Z. Chem. Rev. 2000, 100 (11), 4253.

    5. [5]

      Custelcean, R.; Jackson, J. E. Chem. Rev. 2001, 101 (7), 1963.

    6. [6]

      Belkova, N. V.; Epstein. L. M.; Filippov, O. A.; Shubina, E. S. Chem. Rev. 2016, 116 (15), 8545.

    7. [7]

      Mahmudov, K T.; Pombeiro, A. J. L. Chem-Eur. J. 2016, 22 (46), 16356.

    8. [8]

      Weinhold; Frank; Roger A. K. Angew. Chem. Int. Ed. 2014, 53 (42), 11214.

    9. [9]

      Stone, A. The Theory of Intermolecular Forces; Oxford University Press: Oxford, UK, 2013.

    10. [10]

      Jeziorski, B.; Moszynski, R.; Szalewicz, K. Chem. Rev. 1994, 94 (7), 1887.

    11. [11]

      Bickelhaupt, F. M.; Baerends, E. J. Kohn-Sham Density Functional Theory: Predicting and Understanding Chemistry. In Reviews in Computational Chemistry; Lipkowitz, K. B., Boyd, D. B. Eds.; Wiley: San Francisco, CA, USA, 2000; pp. 1-86.

    12. [12]

      Hohenstein, E. G.; Sherrill, C. D. Wires Comput. Mol. Sci. 2012, 2 (2), 304.

    13. [13]

      Szalewicz, K. Wires Comput. Mol. Sci. 2012, 2 (2), 254.

    14. [14]

      Jansen, G. Wires Comput. Mol. Sci. 2014, 4 (2), 127.

    15. [15]

      Phipps, M. J.; Fox, T.; Tautermann, C. S.; Skylaris, C-K. Chem. Soc. Rev. 2015, 44 (10), 3177.

    16. [16]

      Zhao, L.; von Hopffgarten, M.; Andrada, D. M.; Frenking, G. Wires Comput. Chem. Rev. 2018, 8 (3), e1345.

    17. [17]

      Su, P.; Tang, Z.; Wu, W. Wires Comput. Chem. Rev. 2020, 10 (5), e1460.

    18. [18]

      Kitaura, K.; Morokuma. K. Int. J. Quantum Chem. 1976, 10, 325.

    19. [19]

      Stevens, W. J.; Fink. W. H. Chem. Phys. Lett. 1987, 139 (1), 15.

    20. [20]

      Chen, W.; Gordon, M. S. J. Phys. Chem. 1996, 100 (34), 14316.

    21. [21]

      Bagus, P. S.; Hermann, K.; Bauschlicher Jr., C. W. J. Chem. Phys. 1984, 80 (9), 4378.

    22. [22]

      Bagus, P. S.; Illas, F. J. Chem. Phys. 1992, 96 (12), 8963.

    23. [23]

      Mo, Y.; Gao, J.; Peyerimhoff, S. D. J. Chem. Phys. 2000, 112 (13), 5530.

    24. [24]

      Mo, Y.; Bao. P.; Gao. J. Phys. Chem. Chem. Phys. 2011, 13 (15), 6760.

    25. [25]

      Khaliullin, R. Z.; Cobar, E. A.; Lochan, R. C.; Bell, A. T.; Head-Gordon, M. J. Phys. Chem. A. 2007, 111 (36), 8753.

    26. [26]

      Mao, Y.; Horn, P. R.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2017, 19 (8), 5944.

    27. [27]

      Su, P.; Li, H. J. Chem. Phys. 2009, 131 (1), 014102.

    28. [28]

      Szalewicz, K.; Jeziorski, B. Mol. Phys. 1979, 38, 191.

    29. [29]

      Jeziorski, B.; Moszynski, R.; Szalewicz, K. Chem. Rev. 1994, 94, 1887.

    30. [30]

      Nahoko, K.; Yuji, M.; Hirotoshi, M. J. Chem. Educ. 2023, 100 (2), 647.

    31. [31]

      Su, P.; Jiang, Z.; Chen, Z.; Wu, W. J. Phys. Chem. A. 2014, 118 (13), 2531.

    32. [32]

      Su, P.; Tang, Z.; Wu, W. Wires Comput. Mol. Sci. 2020, 10, e1460.

    33. [33]

      Hankins, D.; Moskowitz, J. W.; Stillinger, F. H. J. Chem. Phys. 1970, 53 (12), 4544.

    34. [34]

      Morokuma, K.; Pedersen, L. J. Chem. Phys. 1968, 48 (7), 3275.

    35. [35]

      Xantheas, S. S. J. Chem. Phys. 1994, 100 (10), 7523.

    36. [36]

      Medders, G. R.; Götz, A. W.; Morales, M. A.; Bajaj, P.; Paesani, F. J. Chem. Phys. 2015, 143 (10), 104102.

    37. [37]

      Dahlke, E. E; Truhlar, D. G. J. Chem. Theory Comput. 2007, 3 (1), 46.

    38. [38]

      Gregory, J. K.; Clary, D. C. J. Phys. Chem. 1996, 100 (46), 18014.

    39. [39]

      Milet, A.; Moszynski, R.; Wormer, P. E.; van der Avoird, A. J. Phys. Chem. A 1999, 103 (34), 6811.

    40. [40]

      Schmitt-Monreal, D.; Jacob, C. R. J. Chem. Theory Comput. 2021, 17 (7), 4144.

    41. [41]

      Herman, K. M.; Xantheas, S. S. Phys. Chem. Chem. Phys. 2023, 25 (10), 7120.

    42. [42]

      Dahlke, E. E.; Truhlar, D. G. J. Chem. Theory Comput. 2007, 3 (4), 1342.

    43. [43]

      Heindel, J. P.; Herman, K. M.; Xantheas, S. S. Annu. Rev. Phys. Chem. 2023, 74, 337.

    44. [44]

      Heindel, J. P.; Xantheas, S. S. J. Chem. Theory Comput. 2020, 16 (11), 6843.

    45. [45]

      Schmitt-Monreal, D.; Jacob, C. R. J. Chem. Theory Comput. 2021, 17 (7), 4144.

    46. [46]

      Nandi, A.; Qu, C.; Houston, P. L.; Conte, R.; Yu, Q.; Bowman, J. M. J. Phys. Chem. Lett. 2021, 12 (42), 10318.

    47. [47]

      Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46 (7), 618.

    48. [48]

      Dunning Jr, T. H. J. Chem. Phys. 1989, 90 (2), 1007.

    49. [49]

      Chai, J. D.; Head-Gordon, M. J. Chem. Phys. 2008, 128 (8), 084106.

    50. [50]

      Iuchi, S.; Izvekov, S.; Voth, G. A. J. Chem. Phys. 2007, 126 (12), 124505.

  • 加载中
    1. [1]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    2. [2]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    3. [3]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    4. [4]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    5. [5]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    6. [6]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    7. [7]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    8. [8]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    9. [9]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    10. [10]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    11. [11]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    12. [12]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    13. [13]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    16. [16]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    17. [17]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    18. [18]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    19. [19]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    20. [20]

      Zongpei Zhang Yanyang Li Yanan Si Kai Li Shuangquan Zang . Developing a Chemistry Experiment Center Employing a Multifaceted Approach to Serve High-Quality Laboratory Education. University Chemistry, 2024, 39(7): 13-19. doi: 10.12461/PKU.DXHX202404041

Metrics
  • PDF Downloads(0)
  • Abstract views(85)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return