Citation:
Aili Feng, Xin Lu, Peng Liu, Dongju Zhang. Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols[J]. University Chemistry,
;2025, 40(3): 92-99.
doi:
10.12461/PKU.DXHX202405072
-
Esterification reactions are an important class of chemical reactions, typically involving the reaction between alcohols and carboxylic acids under acid catalysis to form esters via dehydration. This paper uses several typical esterification reactions as examples and explore three common esterification mechanisms at the molecular level: addition-elimination, carbocation, and acyl cation mechanisms. Both the thermodynamic and kinetic properties of the reactions are examined. The calculated results provide intuitive physical images and quantitative support for understanding qualitative descriptions of esterification reactions found in organic chemistry textbooks, such as “The mechanism of esterification reaction depends on the types of carboxylic acids and alcohols”, “The acid eliminates the hydroxyl group, and the alcohol loses a hydrogen atom in esterification reaction”, and “Esterification reactions are slow and reversible”. These findings offer students a deeper, more comprehensive understanding of esterification reactions. This paper can serve as a teaching case to guide undergraduates in learning computational chemistry, emphasizing the important role of computational chemistry in elucidating the relationship between molecular structures and properties.
-
-
-
[1]
Khan, Z.; Javed, F.; Shamair, Z.; Hafeez, A.; Fazal, T.; Aslam, A.; Zimmerman, W. B.; Rehman, F. J. Ind. Eng. Chem. 2021, 103, 80.
-
[2]
Pereira, C. S. M.; Silva, V. M. T. M.; Rodrigues, A. E. Green Chem. 2011, 13, 2658.
-
[3]
Tang, X.; Chen, E. Y.-X. Chem 2019, 5, 284.
-
[4]
Steele, J. H.; Bozor, M. X.; Boyce, G. R. J. Chem. Educ. 2020, 97, 4127.
-
[5]
Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry Part B: Reactions and Synthesis, 5th ed.; Springer: New York, NY, USA, 2007; pp. 252–254.
-
[6]
-
[7]
Lόpez, D. E.; Suwannakarn, K.; Goodwin, J. G.; Bruce, D. A. Ind. Eng. Chem. Res. 2008, 47, 2221.
-
[8]
Evans, D. P.; Morgan, V. G.; Watson, H. B. J. Chem. Soc. 1935, 1167.
-
[9]
-
[10]
Newman, M. S. J. Am. Chem. Soc. 1941, 63, 2431.
-
[11]
Davies, A. G.; Kenyon, J. Q. Rev., Chem. Soc. 1955, 9, 203.
-
[12]
Bender, M. L. Chem. Rev. 1960, 60, 53.
-
[13]
Jencks, W. P.; Carriuolo, J. J. Am. Chem. Soc. 1961, 83, 1743.
-
[14]
Johnson, S. L. Adv. Phys. Org. Chem. 1967, 5, 237.
-
[15]
McClelland, R. A. J. Am. Chem. Soc. 1984, 106, 7579.
-
[16]
Stefanidis, D.; Jencks, W. P. J. Am. Chem. Soc. 1993, 115, 6045.
-
[17]
Dennington, R. D.; Keith, T. A.; Millam, J. M. GaussView, Revision 6.0.12; Semichem Inc.: Shawnee Mission, KS, USA, 2016.
-
[18]
Frisch M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Baronr, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian16, Revision A. 03; Gaussian Inc.: Wallingford, CT, USA, 2016.
-
[19]
Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.
-
[20]
Weigend, F.; Furche, F.; Ahlrichs, R. J. Chem. Phys. 2003, 119, 12753.
-
[21]
Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.
-
[22]
Portela, S.; Fernández, I. J. Org. Chem. 2022, 87, 9307.
-
[23]
Schlegel, H. B. J. Comp. Chem. 1982, 3, 214.
-
[24]
Fukui, K. Acc. Chem. Res. 1981, 14, 363.
-
[25]
Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. QCPE Bull. 1990, 10, 58.
-
[26]
-
[27]
Santaella, M. A.; Orjuela, A.; Narváez, P. C. Chem. Eng. Process. 2015, 96, 1.
-
[28]
-
[29]
Puterbaugh, W. H.; Vanselow, C. H.; Nelson, K.; Shrawder, E. J. J. Chem. Educ. 1963, 40, 349.
-
[30]
Mohammed Jawad, A. R.; Hummadi, F. A. J. Eng. 2014, 20, 71.
-
[1]
-
-
-
[1]
Xueli Mu , Lingli Han , Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057
-
[2]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[3]
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
-
[4]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[5]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[6]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[7]
Huiying Xu , Minghui Liang , Zhi Zhou , Hui Gao , Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011
-
[8]
Guodong Xu , Chengcai Sheng , Xiaomeng Zhao , Tuojiang Zhang , Zongtang Liu , Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094
-
[9]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[10]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[11]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[12]
Supin Zhao , Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024
-
[13]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[14]
Zhaoyue Lü , Zhehao Chen , Yi Ni , Duanbin Luo , Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047
-
[15]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[16]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[17]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[18]
Yanan Jiang , Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058
-
[19]
Yaqin Zheng , Lian Zhuo , Meng Li , Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119
-
[20]
Wenkai Chen , Yunjia Shen , Xiangmeng Kong , Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(109)
- HTML views(21)