Citation: Aili Feng,  Xin Lu,  Peng Liu,  Dongju Zhang. Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols[J]. University Chemistry, ;2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072 shu

Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols

  • Corresponding author: Peng Liu,  Dongju Zhang, 
  • Received Date: 7 May 2024
    Revised Date: 27 September 2024

  • Esterification reactions are an important class of chemical reactions, typically involving the reaction between alcohols and carboxylic acids under acid catalysis to form esters via dehydration. This paper uses several typical esterification reactions as examples and explore three common esterification mechanisms at the molecular level: addition-elimination, carbocation, and acyl cation mechanisms. Both the thermodynamic and kinetic properties of the reactions are examined. The calculated results provide intuitive physical images and quantitative support for understanding qualitative descriptions of esterification reactions found in organic chemistry textbooks, such as “The mechanism of esterification reaction depends on the types of carboxylic acids and alcohols”, “The acid eliminates the hydroxyl group, and the alcohol loses a hydrogen atom in esterification reaction”, and “Esterification reactions are slow and reversible”. These findings offer students a deeper, more comprehensive understanding of esterification reactions. This paper can serve as a teaching case to guide undergraduates in learning computational chemistry, emphasizing the important role of computational chemistry in elucidating the relationship between molecular structures and properties.
  • 加载中
    1. [1]

      Khan, Z.; Javed, F.; Shamair, Z.; Hafeez, A.; Fazal, T.; Aslam, A.; Zimmerman, W. B.; Rehman, F. J. Ind. Eng. Chem. 2021, 103, 80.

    2. [2]

      Pereira, C. S. M.; Silva, V. M. T. M.; Rodrigues, A. E. Green Chem. 2011, 13, 2658.

    3. [3]

      Tang, X.; Chen, E. Y.-X. Chem 2019, 5, 284.

    4. [4]

      Steele, J. H.; Bozor, M. X.; Boyce, G. R. J. Chem. Educ. 2020, 97, 4127.

    5. [5]

      Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry Part B: Reactions and Synthesis, 5th ed.; Springer: New York, NY, USA, 2007; pp. 252–254.

    6. [6]

    7. [7]

      Lόpez, D. E.; Suwannakarn, K.; Goodwin, J. G.; Bruce, D. A. Ind. Eng. Chem. Res. 2008, 47, 2221.

    8. [8]

      Evans, D. P.; Morgan, V. G.; Watson, H. B. J. Chem. Soc. 1935, 1167.

    9. [9]

    10. [10]

      Newman, M. S. J. Am. Chem. Soc. 1941, 63, 2431.

    11. [11]

      Davies, A. G.; Kenyon, J. Q. Rev., Chem. Soc. 1955, 9, 203.

    12. [12]

      Bender, M. L. Chem. Rev. 1960, 60, 53.

    13. [13]

      Jencks, W. P.; Carriuolo, J. J. Am. Chem. Soc. 1961, 83, 1743.

    14. [14]

      Johnson, S. L. Adv. Phys. Org. Chem. 1967, 5, 237.

    15. [15]

      McClelland, R. A. J. Am. Chem. Soc. 1984, 106, 7579.

    16. [16]

      Stefanidis, D.; Jencks, W. P. J. Am. Chem. Soc. 1993, 115, 6045.

    17. [17]

      Dennington, R. D.; Keith, T. A.; Millam, J. M. GaussView, Revision 6.0.12; Semichem Inc.: Shawnee Mission, KS, USA, 2016.

    18. [18]

      Frisch M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Baronr, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian16, Revision A. 03; Gaussian Inc.: Wallingford, CT, USA, 2016.

    19. [19]

      Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.

    20. [20]

      Weigend, F.; Furche, F.; Ahlrichs, R. J. Chem. Phys. 2003, 119, 12753.

    21. [21]

      Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.

    22. [22]

      Portela, S.; Fernández, I. J. Org. Chem. 2022, 87, 9307.

    23. [23]

      Schlegel, H. B. J. Comp. Chem. 1982, 3, 214.

    24. [24]

      Fukui, K. Acc. Chem. Res. 1981, 14, 363.

    25. [25]

      Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. QCPE Bull. 1990, 10, 58.

    26. [26]

    27. [27]

      Santaella, M. A.; Orjuela, A.; Narváez, P. C. Chem. Eng. Process. 2015, 96, 1.

    28. [28]

    29. [29]

      Puterbaugh, W. H.; Vanselow, C. H.; Nelson, K.; Shrawder, E. J. J. Chem. Educ. 1963, 40, 349.

    30. [30]

      Mohammed Jawad, A. R.; Hummadi, F. A. J. Eng. 2014, 20, 71.

  • 加载中
    1. [1]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    2. [2]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    3. [3]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    4. [4]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    5. [5]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    6. [6]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    7. [7]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    8. [8]

      Guodong Xu Chengcai Sheng Xiaomeng Zhao Tuojiang Zhang Zongtang Liu Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094

    9. [9]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    10. [10]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    11. [11]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    12. [12]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    13. [13]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    14. [14]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    15. [15]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    16. [16]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    17. [17]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    18. [18]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    19. [19]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    20. [20]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

Metrics
  • PDF Downloads(0)
  • Abstract views(108)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return