Citation:
Haiyuan Wang, Yiming Tang, Haoran Guo, Guohui Chen, Yajing Sun, Chao Zhao, Zhen Zhang. Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials[J]. University Chemistry,
;2024, 39(10): 219-228.
doi:
10.12461/PKU.DXHX202404067
-
This study implements research-oriented comprehensive chemistry laboratory teaching by combining fundamental education with scientific research training, thus enhancing talent development and promoting educational reform harmoniously. Silver nanoparticles were synthesized using straightforward inorganic chemical reactions, with the color of the resulting silver nanocolloid solution controlled by varying the bromine/silver ratio. This introduction of surface plasmon resonance characteristics into the experimental curriculum increases the experiment’s engagement. The chemical activity of the silver nanoparticles was verified using the classic p-nitrophenol catalytic reaction model. Results indicated that the silver nanoparticles exhibited excellent catalytic performance, approximating first-order reaction kinetics. Additionally, a simple pollutant degradation reactor was constructed using standard laboratory glassware, and homemade silver-embedded filter paper was used for over ten cycles of degradation, achieving a degradation rate of up to 90%.
-
-
-
[1]
-
[2]
-
[3]
-
[4]
-
[5]
-
[6]
-
[7]
Gu, S.; Wunder, S. J. Phys. Chem. C 2014, 118, 18618.
-
[8]
Strachan, J.; Barnett, C. ACS. Catal. 2020, 10, 5516.
-
[9]
Wunder, S.; Lu, Y. ACS. Catal. 2011, 1, 908.
-
[10]
Menumerov, E.; Hughes, R. A. Nano. Lett. 2016, 16, 7791.
-
[11]
-
[12]
-
[13]
-
[1]
-
-
-
[1]
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
-
[2]
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
-
[3]
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
-
[4]
Simin Fang , Wei Huang , Guanghua Yu , Cong Wei , Mingli Gao , Guangshui Li , Hongjun Tian , Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023
-
[5]
Shui Hu , Houjin Li , Zhenming Zang , Lianyun Li , Rong Lai . Integration of Science and Education Promotes the Construction of Undergraduate-to-Master’s Integration Experimental Courses: A Case Study on the Extraction, Separation and Identification of Artemisinin from Artemisia annua. University Chemistry, 2024, 39(4): 314-321. doi: 10.3866/PKU.DXHX202310063
-
[6]
Biao Zuo , Yizhi Zhang , Zhengkai Chen , Houkuan Tian , Yongneng Wang , Wei Zhang , Weizu Wang , Xuming Zheng , Xinping Wang . Strengthening the Functions of Academic Research and Promoting the Integration of Science and Education: Exploration Ways to Cultivate the Talents of Undergraduate Chemistry Students. University Chemistry, 2024, 39(11): 38-43. doi: 10.3866/PKU.DXHX202402066
-
[7]
Liwei Wang , Guangran Ma , Li Wang , Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094
-
[8]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[9]
Lijuan Wang , Yuping Ning , Jian Li , Sha Luo , Xiongfei Luo , Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017
-
[10]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Exploration on the Integration Mode of Instrumental Analysis with Science and Education under the Background of Artificial Intelligence Era. University Chemistry, 2024, 39(8): 365-374. doi: 10.12461/PKU.DXHX202403014
-
[11]
Yan Liu , Xiaojun Han , Ping Xu , Guoxu Zhang , Yu Wang , Zhicheng Zhang , Dianpeng Qi . “Five Measures” Based Science and Education Integration Experimental Teaching Mode to Promote the Construction of “Specialized Experiment” Curriculum. University Chemistry, 2024, 39(10): 299-307. doi: 10.12461/PKU.DXHX202405002
-
[12]
Shuyong Zhang , Yaxian Zhu , Wenqing Zhang , Yuzhi Wang , Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026
-
[13]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[14]
Xu Liu , Chengfang Liu , Jie Huang , Xiangchun Li , Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, 2024, 39(8): 112-118. doi: 10.3866/PKU.DXHX202402021
-
[15]
Lina Liu , Xiaolan Wei , Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112
-
[16]
Yuping Wei , Yiting Wang , Jialiang Jiang , Jinxuan Deng , Hong Zhang , Xiaofei Ma , Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007
-
[17]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[18]
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
-
[19]
Qiuping Liu , Asan Yang , Jinfa Cai , Ling Liu , Weirong Ji , Genrong Qiang . Developing a New Paradigm for Integrated Science and Education & Multidimensional Connectivity in Chemistry and Chemical Engineering Experimental Education: A Case Study at the National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Zhejiang University of Technology). University Chemistry, 2024, 39(7): 1-7. doi: 10.3866/PKU.DXHX202404001
-
[20]
Jinghua Wang , Yanxin Yu , Yanbiao Ren , Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(132)
- HTML views(11)