Citation: Xilin Zhao,  Xingyu Tu,  Zongxuan Li,  Rui Dong,  Bo Jiang,  Zhiwei Miao. Research Progress in Enantioselective Synthesis of Axial Chiral Compounds[J]. University Chemistry, ;2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106 shu

Research Progress in Enantioselective Synthesis of Axial Chiral Compounds

  • Received Date: 29 March 2024
    Revised Date: 13 June 2024

  • Axially chiral compounds possess unique chiral structures and have significant applications across diverse fields such as asymmetric catalysis, pharmaceuticals, optoelectronic materials, and natural products. In recent years, substantial advancements have been achieved in the enantioselective synthesis of these compounds. Beyond the conventional C—C and C—N axial chiral compounds, notable breakthroughs have been realized in the asymmetric synthesis of chiral compounds featuring N—N, C—S, C—O, and C—B axes. This review summarizes the recent progress in the asymmetric synthesis of various axially chiral compounds and discusses future directions in this research area.
  • 加载中
    1. [1]

      Wang, Y. B.; Tan, B. Acc. Chem. Res. 2018, 51, 534.

    2. [2]

    3. [3]

      Bringmann, G.; Gulder, T.; Gulder, T. A.; Breuning, M. Chem. Rev. 2011, 111, 563.

    4. [4]

      Xie, J. H.; Zhou, Q. L. Acc. Chem. Res. 2008, 41, 581.

    5. [5]

      Basilaia, M.; Chen, M. H.; Secka, J.; Gustafson, J. L. Acc. Chem. Res. 2022, 55, 2904.

    6. [6]

      Kazuya, Y.; Junichiro, Y.; Armido, S.; Kenichiro, I. Chem. Sci. 2012, 3, 2165.

    7. [7]

      Kazuya, Y.; Hiroki, K.; Junichiro, Y.; Kenichiro, I. Chem. Sci. 2013, 4, 3753.

    8. [8]

      Feng, J.; Li, B.; He, Y.; Gu, Z. H. Angew. Chem. Int. Ed. 2016, 55, 2186.

    9. [9]

      Shen, D.; Xu, Y. J.; Shi, S. L. J. Am. Chem. Soc. 2019, 141, 14938.

    10. [10]

      Chen, K. W.; Wang, Z. S.; Wu, P.; Yan, X. Y.; Zhang, S.; Zhang, Y. C.; Shi, F. J. Org. Chem. 2020, 85, 10152.

    11. [11]

      Liu, Z. S.; Hua, Y.; Gao, Q. W.; Ma, Y. Y.; Tang, H.; Shang, Y.; Cheng, H. G.; Zhou, Q. H. Nat. Catal. 2020, 3, 727.

    12. [12]

      Yan, S. Y.; Xia, W.; Li, S. Y.; Song, Q. L.; Xiang, S. H.; Tan, B. J. Am. Chem. Soc. 2020, 142, 7322.

    13. [13]

      Zhang, J. W.; Xu, J. H.; Cheng, D. J.; Shi, C.; Liu, X. Y.; Tan, B. Nat. Commun. 2016, 7, 10677.

    14. [14]

      Liu, H. C.; Tao, H. Y.; Cong, H. J.; Wang, C. J. J. Org. Chem. 2016, 81, 3752.

    15. [15]

      Zhang, L.; Zhang, J.; Ma, J.; Cheng, D. J.; Tan, B. J. Am. Chem. Soc. 2017, 139, 1714.

    16. [16]

      Crawford, J. M.; Stone, E. A.; Metrano, A. J.; Miller, S. J.; Sigman, M. S. J. Am. Chem. Soc. 2018, 140, 868.

    17. [17]

      Vaidya, S. D.; Toenjes, S. T.; Yamamoto, N.; Maddox, S. M.; Gustafson, J. L. J. Am. Chem. Soc. 2020, 142, 2198.

    18. [18]

      Zhu, X. H.; Mi, R. J.; Yin, J.; Wang, F.; Li, X. W. Chem. Sci. 2023, 14, 7999.

    19. [19]

      Mei, G. J.; Wong, J. J.; Zheng, W. R.; Nangia, A. A.; Houk, K. N.; Lu, Y. X. Chem. 2021, 7, 2743.

    20. [20]

      Chen, K. W.; Chen, Z. H.; Yang, S.; Wu, S. F.; Zhang, Y. C.; Shi, F. Angew. Chem.Int. Ed. 2022, 61, e202116829.

    21. [21]

      Pu, L. Y.; Zhang, Y. J.; Liu, W.; Teng, F. Chem. Commun. 2022, 58, 13131.

    22. [22]

      Yao, W.; Lu, C. J.; Zhan, L. W.; Wu, Y.; Feng, J.; Liu, R. R. Angew. Chem. Int. Ed. 2023, 62, e202218871.

    23. [23]

      Yin, S. Y.; Zhou, Q. S.; Liu, C. X.; Gu, Q.; You, S. L. Angew. Chem. Int. Ed. 2023, 62, e202305067.

    24. [24]

      Clayden, J.; Senior, J.; Helliwell, M. Angew. Chem. Int. Ed. 2009, 48, 6270.

    25. [25]

      Shee, S.; Rangannathappa, S. S.; Gadhave, M. S.; Gogoi, R.; Biju, A. T. Angew. Chem. Int. Ed. 2023, 62, e202311709.

    26. [26]

      Xu, J.; Qiu, W. H.; Zhang, X.; Wu, Z. H.; Zhang, Z.; Yang, K.; Song, Q. L. Angew. Chem. Int. Ed. 2023, 62, e202313388.

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    3. [3]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    4. [4]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    5. [5]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    6. [6]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    7. [7]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    8. [8]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    9. [9]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    10. [10]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    11. [11]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    12. [12]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    13. [13]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    14. [14]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    15. [15]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    16. [16]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    17. [17]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    18. [18]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    19. [19]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    20. [20]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

Metrics
  • PDF Downloads(18)
  • Abstract views(639)
  • HTML views(150)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return