Citation:
Zhi Zhou, Yu-E Lian, Yuqing Li, Hui Gao, Wei Yi. New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”[J]. University Chemistry,
;2025, 40(3): 42-51.
doi:
10.12461/PKU.DXHX202403104
-
The combination of cephalosporins and alcohol, commonly known as “taking cephalosporin with alcohol”, has frequently led to clinical tragedies. Traditionally, this is attributed to the inhibition of aldehyde dehydrogenase 2 (ALDH2) by the methylthiotetrazole or methyltriazine side chains present in certain cephalosporin antibiotics, resulting in acetaldehyde accumulation and toxicity (disulfiram-like reaction). However, recent clinical cases show that evencephalosporins lacking these side chains, such as ceftazidime, can cause acetaldehyde accumulation, suggesting a potential new mechanism that the existing explanation does not cover. During the lecture, the authors inspired students to apply computational simulation tools to explore everyday chemical phenomena, such as the “cephalosporin with alcohol” scenario. This study uses molecular docking, molecular dynamics simulation, and molecular mechanics Poisson-Boltzmann surface area (MMPBSA) calculations to investigate binding modes of cephoperazone, ceftriaxone, and ceftazidime with ALDH2, uncovering a new mechanism of interaction between cephalosporins and ALDH2. This case study not only provides a deeper scientific explanation of the popular online phrase "taking cephalosporin with alcohol is danger to health" but also encourages students to explore the scientific basis of everyday chemical phenomena. More importantly, it offers novel insights and theoretical evidence for the molecular mechanisms underlying clinical tragedies caused by cephalosporin-alcohol interactions.
-
-
-
[1]
Mergenhagen, K. A.; Wattengel, B. A.; Skelly, M. K.; Clark, C. M.; Russob, T. A. Antimicrob. Agents Ch. 2020, 64 (3), e02167.
-
[2]
Zakhari, S.; Li, T.-K. Hepatology 2007, 46 (6), 2032.
-
[3]
Oyama, T. Front. Biosci. 2005, 10 (1-3), 951.
-
[4]
Johansson, K.; Ramaswamy, S.; Eklund, H.; El-Ahmad, M.; Hjelmqvist, L.; Jörnvall, H. Protein Sci. 1998, 7 (10), 2106.
-
[5]
Edenberg, H. J.; McClintick, J. N. Alcohol. Clin. Exp. Res. 2018, 42 (12), 2281.
-
[6]
Skinner, M. D.; Lahmek, P.; Pham, H.; Aubin, H.-J. PLoS One 2014, 9 (2), e87366.
-
[7]
Brooks, P. J.; Enoch, M.-A.; Goldman, D.; Li, T.-K.; Yokoyama, A. PLoS Med.2009, 6 (3), 1.
-
[8]
Freundt, K.; Schreiner, E.; Christmann-Kleiss, U. Arzneimittel-Forsch. 1986, 36 (2), 223.
-
[9]
Small, S. M.; Bacher, R. S.; Jost, S. A. J. Pediatr. Pharmacol. Ther. 2018, 23 (2), 168.
-
[10]
-
[11]
-
[12]
Lowe, E. D.; Gao, G.-Y.; Johnson, L. N.; Keung, W. M. J. Med. Chem. 2008, 51 (15), 4482.
-
[13]
Larson, H. N.; Weiner, H.; Hurley, T. D. J. Bio. Chem. 2005, 280 (34), 30550.
-
[14]
Eberhardt, J.; Santos-Martins, D.; Tillack, A. F.; Forli, S. J. Chem. Inf. Model. 2021, 61 (8), 3891.
-
[15]
Neese, F. WIREs Comput. Mol. Sci. 2022, 12 (5), e1606.
-
[16]
Lu, T.; Chen, F. J. Comput. Chem. 2012, 33 (5), 580.
-
[17]
Lindorff‐Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J. L.; Dror, R. O.; Shaw, D. E. Proteins 2010, 78 (8), 1950.
-
[18]
Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79 (2), 926.
-
[19]
Bussi, G.; Donadio, D.; Parrinello, M. J. Chem. Phys. 2007, 126 (1), 014101.
-
[20]
Bernetti, M.; Bussi, G. J. Chem. Phys. 2020, 153 (11), 114107.
-
[21]
Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103 (19), 8577.
-
[22]
Valdés-Tresanco, M. S.; Valdés-Tresanco, M. E.; Valiente, P. A.; Moreno, E. J. Chem. Theory Comput. 2021, 17 (10), 6281.
-
[23]
-
[1]
-
-
-
[1]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[2]
Zhenming Xu , Yibo Wang , Zhenhui Liu , Duo Chen , Mingbo Zheng , Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096
-
[3]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[4]
Chengpeng Liu , Yinxia Fu . Design and Practice of Ideological and Political Education for the Public Elective Course “Life Chemistry Experiment” in Universities. University Chemistry, 2024, 39(10): 242-248. doi: 10.12461/PKU.DXHX202404064
-
[5]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
-
[6]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[7]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[8]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[9]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[10]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[11]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[12]
Yaping Li , Sai An , Aiqing Cao , Shilong Li , Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185
-
[13]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[14]
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012
-
[15]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[16]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . 基于激发态手性铜催化的烯烃E→Z异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[17]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[18]
Yong Shu , Xing Chen , Sai Duan , Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102
-
[19]
Pingping Zhu , Yongjun Xie , Yuanping Yi , Yu Huang , Qiang Zhou , Shiyan Xiao , Haiyang Yang , Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063
-
[20]
Laiying Zhang , Yinghuan Wu , Yazi Yu , Yecheng Xu , Haojie Zhang , Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(136)
- HTML views(50)