Citation: Zhi Zhou,  Yu-E Lian,  Yuqing Li,  Hui Gao,  Wei Yi. New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”[J]. University Chemistry, ;2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104 shu

New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”

  • Corresponding author: Hui Gao,  Wei Yi, 
  • Received Date: 29 March 2024
    Revised Date: 4 July 2024

  • The combination of cephalosporins and alcohol, commonly known as “taking cephalosporin with alcohol”, has frequently led to clinical tragedies. Traditionally, this is attributed to the inhibition of aldehyde dehydrogenase 2 (ALDH2) by the methylthiotetrazole or methyltriazine side chains present in certain cephalosporin antibiotics, resulting in acetaldehyde accumulation and toxicity (disulfiram-like reaction). However, recent clinical cases show that evencephalosporins lacking these side chains, such as ceftazidime, can cause acetaldehyde accumulation, suggesting a potential new mechanism that the existing explanation does not cover. During the lecture, the authors inspired students to apply computational simulation tools to explore everyday chemical phenomena, such as the “cephalosporin with alcohol” scenario. This study uses molecular docking, molecular dynamics simulation, and molecular mechanics Poisson-Boltzmann surface area (MMPBSA) calculations to investigate binding modes of cephoperazone, ceftriaxone, and ceftazidime with ALDH2, uncovering a new mechanism of interaction between cephalosporins and ALDH2. This case study not only provides a deeper scientific explanation of the popular online phrase "taking cephalosporin with alcohol is danger to health" but also encourages students to explore the scientific basis of everyday chemical phenomena. More importantly, it offers novel insights and theoretical evidence for the molecular mechanisms underlying clinical tragedies caused by cephalosporin-alcohol interactions.
  • 加载中
    1. [1]

      Mergenhagen, K. A.; Wattengel, B. A.; Skelly, M. K.; Clark, C. M.; Russob, T. A. Antimicrob. Agents Ch. 2020, 64 (3), e02167.

    2. [2]

      Zakhari, S.; Li, T.-K. Hepatology 2007, 46 (6), 2032.

    3. [3]

      Oyama, T. Front. Biosci. 2005, 10 (1-3), 951.

    4. [4]

      Johansson, K.; Ramaswamy, S.; Eklund, H.; El-Ahmad, M.; Hjelmqvist, L.; Jörnvall, H. Protein Sci. 1998, 7 (10), 2106.

    5. [5]

      Edenberg, H. J.; McClintick, J. N. Alcohol. Clin. Exp. Res. 2018, 42 (12), 2281.

    6. [6]

      Skinner, M. D.; Lahmek, P.; Pham, H.; Aubin, H.-J. PLoS One 2014, 9 (2), e87366.

    7. [7]

      Brooks, P. J.; Enoch, M.-A.; Goldman, D.; Li, T.-K.; Yokoyama, A. PLoS Med.2009, 6 (3), 1.

    8. [8]

      Freundt, K.; Schreiner, E.; Christmann-Kleiss, U. Arzneimittel-Forsch. 1986, 36 (2), 223.

    9. [9]

      Small, S. M.; Bacher, R. S.; Jost, S. A. J. Pediatr. Pharmacol. Ther. 2018, 23 (2), 168.

    10. [10]

    11. [11]

    12. [12]

      Lowe, E. D.; Gao, G.-Y.; Johnson, L. N.; Keung, W. M. J. Med. Chem. 2008, 51 (15), 4482.

    13. [13]

      Larson, H. N.; Weiner, H.; Hurley, T. D. J. Bio. Chem. 2005, 280 (34), 30550.

    14. [14]

      Eberhardt, J.; Santos-Martins, D.; Tillack, A. F.; Forli, S. J. Chem. Inf. Model. 2021, 61 (8), 3891.

    15. [15]

      Neese, F. WIREs Comput. Mol. Sci. 2022, 12 (5), e1606.

    16. [16]

      Lu, T.; Chen, F. J. Comput. Chem. 2012, 33 (5), 580.

    17. [17]

      Lindorff‐Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J. L.; Dror, R. O.; Shaw, D. E. Proteins 2010, 78 (8), 1950.

    18. [18]

      Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79 (2), 926.

    19. [19]

      Bussi, G.; Donadio, D.; Parrinello, M. J. Chem. Phys. 2007, 126 (1), 014101.

    20. [20]

      Bernetti, M.; Bussi, G. J. Chem. Phys. 2020, 153 (11), 114107.

    21. [21]

      Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103 (19), 8577.

    22. [22]

      Valdés-Tresanco, M. S.; Valdés-Tresanco, M. E.; Valiente, P. A.; Moreno, E. J. Chem. Theory Comput. 2021, 17 (10), 6281.

    23. [23]

  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Chengpeng Liu Yinxia Fu . Design and Practice of Ideological and Political Education for the Public Elective Course “Life Chemistry Experiment” in Universities. University Chemistry, 2024, 39(10): 242-248. doi: 10.12461/PKU.DXHX202404064

    5. [5]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    6. [6]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    7. [7]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    8. [8]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    9. [9]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    10. [10]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    11. [11]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    12. [12]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    13. [13]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    14. [14]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    15. [15]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    16. [16]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    17. [17]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    18. [18]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    19. [19]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    20. [20]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

Metrics
  • PDF Downloads(0)
  • Abstract views(135)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return