深入剖析高分子物理中自由体积的科学内涵、测试方法及其应用

肖承义 孙晓丽 张晨 李韦伟

引用本文: 肖承义, 孙晓丽, 张晨, 李韦伟. 深入剖析高分子物理中自由体积的科学内涵、测试方法及其应用[J]. 大学化学, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069 shu
Citation:  Chengyi Xiao,  Xiaoli Sun,  Chen Zhang,  Weiwei Li. An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics[J]. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069 shu

深入剖析高分子物理中自由体积的科学内涵、测试方法及其应用

  • 基金项目:

    北京市高等教学学会2023年面上项目

摘要: 自由体积概念起源于液体黏度研究,后由Fox和Flory应用于高分子材料玻璃化转变,成为解析高分子物理现象的关键工具。当前教学中对自由体积探讨不足,本文概述了自由体积的起源、定义和应用,探讨了测试方法,并深入研究了自由体积与高分子物理性能的联系。本研究旨在深化学生对自由体积概念的理解,促进对高分子物理过程的全面把握,激发学习兴趣和科研热情。

English

    1. [1]

      励杭泉. 高分子物理. 第2版. 北京: 中国轻工业出版社, 2020: 1–352.

    2. [2]

      过梅丽, 赵得禄. 高分子物理. 第1版. 北京: 北京航空航天大学出版社, 2020: 1–381.

    3. [3]

      Eyring, H.; Hirschfelder, J. J. Phys. Chem. 1937, 41 (2), 249.Eyring, H.; Hirschfelder, J. J. Phys. Chem. 1937, 41 (2), 249.

    4. [4]

      Bondi, A. J. Phys. Chem. 1954, 58 (11), 929.Bondi, A. J. Phys. Chem. 1954, 58 (11), 929.

    5. [5]

      Fox, T. G., Jr.; Flory, P. J. J. Appl. Phys. 1950, 21 (6), 581.Fox, T. G., Jr.; Flory, P. J. J. Appl. Phys. 1950, 21 (6), 581.

    6. [6]

      Swapna, V. P.; Abhisha, V. S.; Stephen, R. Polymer/Polyhedral Oligomeric Silsesquioxane Nanocomposite Membranes for Pervaporation. In Polymer Nanocomposite Membranes for Pervaporation, 1st ed.; Thomas, S., George, S. C., Jose, T., Eds. Elsevier: Amsterdam, The Netherlands, 2020; pp. 201–229.Swapna, V. P.; Abhisha, V. S.; Stephen, R. Polymer/Polyhedral Oligomeric Silsesquioxane Nanocomposite Membranes for Pervaporation. In Polymer Nanocomposite Membranes for Pervaporation, 1st ed.; Thomas, S., George, S. C., Jose, T., Eds. Elsevier: Amsterdam, The Netherlands, 2020; pp. 201–229.

    7. [7]

      Fox, T. G.; Flory, P. J. J. Polym. Sci. 1954, 14 (75), 315.Fox, T. G.; Flory, P. J. J. Polym. Sci. 1954, 14 (75), 315.

    8. [8]

      Williams, M. L.; Landel, R. F.; Ferry, J. D. J. Am. Chem. Soc. 1955, 77 (14), 3701.Williams, M. L.; Landel, R. F.; Ferry, J. D. J. Am. Chem. Soc. 1955, 77 (14), 3701.

    9. [9]

      Ren, Y.-K.; Li, Y.-T.; Li, L.-B. Chin. J. Polym. Sci. 2017, 35 (11), 1415.Ren, Y.-K.; Li, Y.-T.; Li, L.-B. Chin. J. Polym. Sci. 2017, 35 (11), 1415.

    10. [10]

      Cohen, M. H.; Turnbull, D. J. Chem. Phys. 1959, 31 (5), 1164.Cohen, M. H.; Turnbull, D. J. Chem. Phys. 1959, 31 (5), 1164.

    11. [11]

      White, R. P.; Lipson, J. E. G. Macromolecules 2016, 49 (11), 3987.White, R. P.; Lipson, J. E. G. Macromolecules 2016, 49 (11), 3987.

    12. [12]

      Spaepen, F. Defects in Amorphous Metals. In Les Houches Lectures XXXV on Physics of Defects, 1st ed.; Balian, R., Kléman, M., Poirier, J.-P., Eds. North Holland Press: Amsterdam, The Netherlands, 1981; pp. 133–174.Spaepen, F. Defects in Amorphous Metals. In Les Houches Lectures XXXV on Physics of Defects, 1st ed.; Balian, R., Kléman, M., Poirier, J.-P., Eds. North Holland Press: Amsterdam, The Netherlands, 1981; pp. 133–174.

    13. [13]

      Yasuda, H.; Ikenberry, L. D.; Lamaze, C. E. Makromol. Chem. 1969, 125 (1), 108.Yasuda, H.; Ikenberry, L. D.; Lamaze, C. E. Makromol. Chem. 1969, 125 (1), 108.

    14. [14]

      Hirai, N.; Eyring, H. J. Polym. Sci. 1959, 37 (131), 51.Hirai, N.; Eyring, H. J. Polym. Sci. 1959, 37 (131), 51.

    15. [15]

      Simha, R.; Boyer, R. F. J. Chem. Phys. 1962, 37 (5), 1003.Simha, R.; Boyer, R. F. J. Chem. Phys. 1962, 37 (5), 1003.

    16. [16]

      Miller, A. A. J. Polym. Sci. Part A-2: Polym. Phys. 1966, 4 (3), 415.Miller, A. A. J. Polym. Sci. Part A-2: Polym. Phys. 1966, 4 (3), 415.

    17. [17]

      Cohen, M. H.; Grest, G. S. Phys. Rev. B 1979, 20 (3), 1077.Cohen, M. H.; Grest, G. S. Phys. Rev. B 1979, 20 (3), 1077.

    18. [18]

      Kilburn, D.; Dlubek, G.; Pionteck, J.; Alam, M. A. Polymer 2006, 47 (22), 7774.Kilburn, D.; Dlubek, G.; Pionteck, J.; Alam, M. A. Polymer 2006, 47 (22), 7774.

    19. [19]

      Orwoll, R. J. Densities, Coefficients of Thermal Expansion, and Compressibilities of Amorphous Polymers. In Physical Properties of Polymers Handbook, 2nd ed.; Mark, J. E., Eds. Springer: Heidelberg, Germany, 2007; pp. 93–217.Orwoll, R. J. Densities, Coefficients of Thermal Expansion, and Compressibilities of Amorphous Polymers. In Physical Properties of Polymers Handbook, 2nd ed.; Mark, J. E., Eds. Springer: Heidelberg, Germany, 2007; pp. 93–217.

    20. [20]

      何元金, 马兴坤, 桂治轮, 李龙土. 物理学报, 1998, 47 (1), 147.

    21. [21]

      Banlusan, K.; Strachan, A. J. Chem. Phys. 2017, 146 (18), 184705.Banlusan, K.; Strachan, A. J. Chem. Phys. 2017, 146 (18), 184705.

    22. [22]

      Pal, S.; Reddy, K. V.; Yu, T.; Xiao, J.; Deng, C. J. Mater. Sci. 2021, 56 (19), 11511.Pal, S.; Reddy, K. V.; Yu, T.; Xiao, J.; Deng, C. J. Mater. Sci. 2021, 56 (19), 11511.

    23. [23]

      Banlusan, K.; Amornkitbamrung, V. J. Phys. Chem. C 2020, 124 (31), 17027.Banlusan, K.; Amornkitbamrung, V. J. Phys. Chem. C 2020, 124 (31), 17027.

    24. [24]

      Simha, R.; Somcynsky, T. Macromolecules 1969, 2 (4), 342.Simha, R.; Somcynsky, T. Macromolecules 1969, 2 (4), 342.

    25. [25]

      Simha, R.; Carri, G. J. Polym. Sci. Part B: Polym. Phys. 1994, 32 (16), 2645.Simha, R.; Carri, G. J. Polym. Sci. Part B: Polym. Phys. 1994, 32 (16), 2645.

    26. [26]

      黄飞, 伍先安, 王建, 杨卫民, 谢鹏程. 中国塑料, 2021, 35 (6), 125.

    27. [27]

      McDermott, A. G.; Budd, P. M.; McKeown, N. B.; Colina, C. M.; Runt, J. J. Mater. Chem. A 2014, 2 (30), 11742.McDermott, A. G.; Budd, P. M.; McKeown, N. B.; Colina, C. M.; Runt, J. J. Mater. Chem. A 2014, 2 (30), 11742.

    28. [28]

      Asano, A.; Takegoshi, K. J. Chem. Phys. 2001, 115 (18), 8665.Asano, A.; Takegoshi, K. J. Chem. Phys. 2001, 115 (18), 8665.

    29. [29]

      Golemme, G.; Nagy, J. B.; Fonseca, A.; Algieri, C.; Yampolskii, Y. Polymer 2003, 44 (17), 5039.Golemme, G.; Nagy, J. B.; Fonseca, A.; Algieri, C.; Yampolskii, Y. Polymer 2003, 44 (17), 5039.

    30. [30]

      Eldrup, M.; Lightbody, D.; Sherwood, J. N. Chem. Phys. 1981, 63 (1), 51.Eldrup, M.; Lightbody, D.; Sherwood, J. N. Chem. Phys. 1981, 63 (1), 51.

    31. [31]

      Zhang, H. J.; Sellaiyan, S.; Kakizaki, T.; Uedono, A.; Taniguchi, Y.; Hayashi, K. Macromolecules 2017, 50 (10), 3933.Zhang, H. J.; Sellaiyan, S.; Kakizaki, T.; Uedono, A.; Taniguchi, Y.; Hayashi, K. Macromolecules 2017, 50 (10), 3933.

    32. [32]

      时博, 王金辉, 魏福安. 材料导报, 2019, 33 (7), 1221.

    33. [33]

      韩小兵, 高洁, 陈涛, 陈志远. 精细与专用化学品, 2022, 30 (11), 45.

    34. [34]

      Milina, M.; Mitchell, S.; Crivelli, P.; Cooke, D.; Pérez-Ramírez, J. Nat. Commun. 2014, 5 (1), 3922.Milina, M.; Mitchell, S.; Crivelli, P.; Cooke, D.; Pérez-Ramírez, J. Nat. Commun. 2014, 5 (1), 3922.

    35. [35]

      Fica-Contreras, S. M.; Hoffman, D. J.; Pan, J.; Liang, C.; Fayer, M. D. J. Am. Chem. Soc. 2021, 143 (9), 3583.Fica-Contreras, S. M.; Hoffman, D. J.; Pan, J.; Liang, C.; Fayer, M. D. J. Am. Chem. Soc. 2021, 143 (9), 3583.

    36. [36]

      Curro, J. G.; Lagasse, R. R.; Simha, R. Macromolecules 1982, 15 (6), 1621.Curro, J. G.; Lagasse, R. R.; Simha, R. Macromolecules 1982, 15 (6), 1621.

    37. [37]

      McCaig, M.; Paul, D. R. Polymer 2000, 41 (2), 629.McCaig, M.; Paul, D. R. Polymer 2000, 41 (2), 629.

    38. [38]

      Lee, W. M. Polym. Eng. Sci. 1980, 20 (1), 65.Lee, W. M. Polym. Eng. Sci. 1980, 20 (1), 65.

    39. [39]

      Adam, G., Gibbs, J. H. J. Chem. Phys. 2004, 43 (1), 139.Adam, G., Gibbs, J. H. J. Chem. Phys. 2004, 43 (1), 139.

    40. [40]

      黑恩成, 刘国杰. 大学化学, 2008, 23 (1), 67.

    41. [41]

      唐伯明, 丁勇杰, 苏玥, 曹雪娟, 邓梅, 单柏林. 科学通报, 2020, 65 (30), 3308.

    42. [42]

      Doolittle, A. K. J. Appl. Phys. 1951, 22 (12), 1471.Doolittle, A. K. J. Appl. Phys. 1951, 22 (12), 1471.

    43. [43]

      Vogel, H. Phys. Z 1921, 22 (1), 645.Vogel, H. Phys. Z 1921, 22 (1), 645.

    44. [44]

      Fulcher, G. S. J. Am. Ceram. Soc. 1925, 8 (6), 339.Fulcher, G. S. J. Am. Ceram. Soc. 1925, 8 (6), 339.

    45. [45]

      Tammann, G.; Hesse, W. Z. Anorg. Allg. Chem. 1926, 156 (4), 245.Tammann, G.; Hesse, W. Z. Anorg. Allg. Chem. 1926, 156 (4), 245.

    46. [46]

      Allal, A.; Boned, C.; Baylaucq, A. Phys. Rev. E 2001, 64 (1), 011203.Allal, A.; Boned, C.; Baylaucq, A. Phys. Rev. E 2001, 64 (1), 011203.

    47. [47]

      Simha, R.; Boyer, R. F. J. Chem. Phys. 2004, 37 (5), 1003.Simha, R.; Boyer, R. F. J. Chem. Phys. 2004, 37 (5), 1003.

    48. [48]

      Dlubek, G.; Saarinen, K.; Fretwell, H. M. J. Polym. Sci. Part B: Polym. Phys. 1998, 36 (9), 1513.Dlubek, G.; Saarinen, K.; Fretwell, H. M. J. Polym. Sci. Part B: Polym. Phys. 1998, 36 (9), 1513.

    49. [49]

      Williams, M. L. J. Appl. Phys. 1958, 29 (10), 1395.Williams, M. L. J. Appl. Phys. 1958, 29 (10), 1395.

    50. [50]

      Kruse, J.; Kanzow, J.; Rätzke, K.; Faupel, F.; Heuchel, M.; Frahn, J.; Hofmann, D. Macromolecules 2005, 38 (23), 9638.Kruse, J.; Kanzow, J.; Rätzke, K.; Faupel, F.; Heuchel, M.; Frahn, J.; Hofmann, D. Macromolecules 2005, 38 (23), 9638.

    51. [51]

      Miller, A. A. J. Polym. Sci., Part A: Gen. Pap. 1964, 2 (3), 1095.Miller, A. A. J. Polym. Sci., Part A: Gen. Pap. 1964, 2 (3), 1095.

    52. [52]

      Liu, X.; Wu, H.; Xu, W.; Jiang, Y.; Zhang, J.; Ye, B.; Zhang, H.; Chen, S.; Miao, M.; Zhang, D. Adv. Mater. 2024, 36 (9), 2308434.Liu, X.; Wu, H.; Xu, W.; Jiang, Y.; Zhang, J.; Ye, B.; Zhang, H.; Chen, S.; Miao, M.; Zhang, D. Adv. Mater. 2024, 36 (9), 2308434.

    53. [53]

      徐晖, 王绍宁, 郑俊民. 中国药剂学杂志(网络版), 2004, 2 (1), 7.

    54. [54]

      Godwin, A. D. Plasticizers. In Applied Plastics Engineering Handbook: Processing and Materials, 1st ed.; Kutz, M., Eds. William Andrew Publishing: Oxford, UK, 2011; pp. 487–501.Godwin, A. D. Plasticizers. In Applied Plastics Engineering Handbook: Processing and Materials, 1st ed.; Kutz, M., Eds. William Andrew Publishing: Oxford, UK, 2011; pp. 487–501.

    55. [55]

      Langer, E.; Bortel, K.; Waskiewicz, S.; Lenartowicz-Klik, M. Assessment of Traditional Plasticizers. In Plasticizers Derived from Post-Consumer PET, 1st ed.; Payne, E., Adamson, P., Eds. William Andrew Publishing: Oxford, UK, 2020; pp. 1–11.Langer, E.; Bortel, K.; Waskiewicz, S.; Lenartowicz-Klik, M. Assessment of Traditional Plasticizers. In Plasticizers Derived from Post-Consumer PET, 1st ed.; Payne, E., Adamson, P., Eds. William Andrew Publishing: Oxford, UK, 2020; pp. 1–11.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  2
  • HTML全文浏览量:  0
文章相关
  • 发布日期:  2024-09-06
  • 收稿日期:  2024-03-23
  • 修回日期:  2024-05-20
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章