Citation: Yuyang Xu,  Ruying Yang,  Yanzhe Zhang,  Yandong Liu,  Keyi Li,  Zehui Wei. Research Progress of Aflatoxins Removal by Modern Optical Methods[J]. University Chemistry, ;2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064 shu

Research Progress of Aflatoxins Removal by Modern Optical Methods

  • Received Date: 28 February 2024
    Revised Date: 10 May 2024

  • Aflatoxins are toxic secondary metabolites mainly produced by Aspergillus fungi, which are easily generated during the transportation and storage of food, medicinal materials, and other products. These toxins have high carcinogenic effects on humans and animals, making them a global safety hazard. Researchers have long been developing various effective strategies to degrade aflatoxins in food and medicinal materials, including physical, chemical, and biological techniques. Among these, optical radiation elimination method has garnered significant attention due to their simple operation, low cost, high elimination efficiency, and non-destructive nature. This paper reviews the application of modern optical methods in the removal of aflatoxins, including ultraviolet, infrared, pulsed strong light, photocatalysis, plasma techniques, providing a reference for the development of efficient, convenient, safe, and controllable aflatoxins removal methods.
  • 加载中
    1. [1]

    2. [2]

      My, A.; Ds, S. January 1997, 3, 161.

    3. [3]

      Marchese, S.; Polo, A.; Ariano, A.; Velotto, S.; Costantini, S.; Severino, L. Toxins 2018, 10 (6), 214.

    4. [4]

      Ostry, V.; Malir, F.; Toman, J.; Grosse, Y. Mycotoxin Res. 2017, 33 (1), 65.

    5. [5]

      Pandey, M. K.; Kumar, R.; Pandey, A. K.; Soni, P.; Gangurde, S. S.; Sudini, H. K.; Fountain, J. C.; Liao, B.; Desmae, H.; Okori, P.; et al. Toxins 2019, 11 (6), 315.

    6. [6]

    7. [7]

    8. [8]

    9. [9]

    10. [10]

    11. [11]

      Samarajeewa, U.; Sen, A. C.; Cohen, M. D.; Wei, C. I. J. Food Prot. 1990, 53 (6), 489.

    12. [12]

    13. [13]

    14. [14]

    15. [15]

      Allah, B. G.; Mahvish, J. C.; Saghir, A. S.; Shafi, M. N.; Irshad, H. G. Int. J. Biosci. 2016, 8, 8.

    16. [16]

    17. [17]

      Liu, R.; Jin, Q.; Tao, G.; Shan, L.; Huang, J.; Liu, Y.; Wang, X.; Mao, W.; Wang, S. J. Mass Spectrom. 2010, 45 (5), 553.

    18. [18]

      Shen, N.; Zhang, X. Z.; Zheng, W. W.; Diao, E. J.; Dong, H. Z. Int. J. Food Sci. Technol. 2015, 50 (1), 41.

    19. [19]

      Fan, X.; Huang, R.; Chen, H. Trends Food Sci. Technol. 2017, 70, 9.

    20. [20]

      Shen, M.; Singh, R. K. Lwt 2021, 142, 110986.

    21. [21]

    22. [22]

    23. [23]

    24. [24]

    25. [25]

    26. [26]

    27. [27]

    28. [28]

      Moreau, M.; Lescure, G.; Agoulon, A.; Svinareff, P.; Orange, N.; Feuilloley, M. J. Appl. Toxicol. 2013, 33 (5), 357.

    29. [29]

      Abuagela, M. O.; Iqdiam, B. M.; Mostafa, H.; Gu, L.; Smith, M. E.; Sarnoski, P. J. Int. J. Food Sci. Technol. 2018, 53 (11), 2567.

    30. [30]

      Sun, S.; Zhao, R.; Xie, Y.; Liu, Y. Food Control. 2019, 100, 183.

    31. [31]

      Tarek, S. J.; Abbas, H. A.; Rabab, A. N.; Ahmed, A. El-K.; Mohamed, I. M. I. J. Photochem. Photobiol. A 2017, 341, 127.

    32. [32]

      Wei, L.; Chen, S.; Yang, X.; Zhang, H.; Mo, Z.; Yang, J.; Wang, H. Inorg. Chem. Commun. 2024, 160, 111886.

    33. [33]

      Samuel, M. S.; Mohanraj, K.; Chandrasekar, N.; Balaji, R.; Selvarajan, E. Chemosphere 2022, 291, 132684.

    34. [34]

    35. [35]

      Zhang, J.; Gao, X.; Guo, W.; Wu, Z.; Yin, Y.; Li, Z. RSC Adv. 2022, 12 (11), 6676.

    36. [36]

    37. [37]

      Gavahian, M.; Cullen, P. Food Rev. Int. 2020, 36 (1/4), 193.

    38. [38]

      Sakudo, A.; Toyokawa, Y.; Misawa, T.; Imanishi, Y. Food Control. 2016, 73, 619.

    39. [39]

      Siciliano, I.; Spadaro, D.; Prelle, A.; Vallauri, D.; Cavallero, M.; Garibaldi, A.; Gullino, M. Toxins 2016, 8 (5), 125.

    40. [40]

    41. [41]

      Zhao, L.; Wang, J.; Sheng, X.; Li, S.; Yan, W.; Qian, J.; Zhang, J.; Raghavan, V. Chem. Eng. J. 2023, 475, 146017.

    42. [42]

    43. [43]

      Iqbal, S. Z.; Bhatti, I. A.; Asi, M. R.; Zuber, M.; Shahid, M.; Parveen, I. Radiat. Phys. Chem. 2013, 82, 80.

    44. [44]

      Markov, K.; Mihaljević, B.; Domijan, A.; Pleadin, J.; Delaš, F.; Frece, J. Food Control. 2015, 54, 79.

    45. [45]

      Assunção, E.; Reis, T. A.; Baquião, A. C.; Corrêa, B. J. Food Prot. 2015, 78 (7), 1397.

    46. [46]

      Guo, Y.; Zhao, L.; Ma, Q.; Ji, C. Food Res. Int. 2021, 140, 109878.

    47. [47]

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    3. [3]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    4. [4]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    5. [5]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    6. [6]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    7. [7]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    8. [8]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    9. [9]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    10. [10]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    11. [11]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    12. [12]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    13. [13]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    14. [14]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    15. [15]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    16. [16]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    17. [17]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    18. [18]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    19. [19]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    20. [20]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

Metrics
  • PDF Downloads(4)
  • Abstract views(623)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return