Citation: ZHANG Huili, CUI Hongyan, HUANG Wenlong, HU Guoqiang. Synthesis and Antitumor Activity of 3-Arylidene-Quinolin-4-Ones Derivatives of Levofloxacin[J]. Chinese Journal of Applied Chemistry, ;2020, 37(12): 1426-1431. doi: 10.11944/j.issn.1000-0518.2020.12.200177 shu

Synthesis and Antitumor Activity of 3-Arylidene-Quinolin-4-Ones Derivatives of Levofloxacin

  • Corresponding author: CUI Hongyan, lee7758521_1@163.com HU Guoqiang, hgqxy@sina.com
  • Received Date: 11 June 2020
    Revised Date: 10 August 2020
    Accepted Date: 18 September 2020

    Fund Project: the National Natural Science Foundation of China 20872028the National Natural Science Foundation of China 21072045Supported by the National Natural Science Foundation of China(No.20872028, No.21072045) and the Science and Technology Development Plan Project of Henan Province(No.162102310392)the Science and Technology Development Plan Project of Henan Province 162102310392

Figures(2)

  • To further explore an efficient structural modification strategy, a fragment-based drug design, for improving the antitumor activity of fluoroquinolones, twelve novel 3-arylidene-quinolin-4(1H)-ones as levofloxacin derivatives (3a-3l) were synthesized by a condensation reaction of dihydroquinolin-4(1H)-one with aromatic aldehydes. The measured half inhibition concentration(IC50) values using human hepatocellular carcinoma cell lines (SMMC-7721), human pancreatic cancer cell lines (Capan-1) and human leukemia cell line (HL60) cell lines reveal that the antitumor activities of the synthesized compounds are more potent than that of levofloxacin. Meanwhile, the halophenyl compounds such as fluorophenyl (3i, 3j), chlorophenyl (3k) or bromophenyl compounds (3l) display better activities than the control compounds, especially the IC50 value of chlorophenyl (3k) against SMMC-7721 and Capan-1 cell is comparable to that of doxorubicin. Thus, 3-arylidene-quinolin-4(1H)-one skeleton instead of quinolin-4(1H)-one-3-carboxylic acid is beneficial to improve the antitumor activities of fluoroquinolones. Furthermore, an α, β-unsaturated ketone fragment as a promising candidate pharmacophore for an alternative modified group of fluoroquinolone needs to be developed.
  • 加载中
    1. [1]

      Liang X, Wu Q, Luan S. A Comprehensive Review of Topoisomerase Inhibitors as Anticancer Agents in the Past Decade[J]. Eur J Med Chem, 2019,171:129-168.

    2. [2]

      Mohammed H H H, Abuo-Rahma G E A A, Abbas S H. Current Trends and Future Directions of Fluoroquinolones[J]. Curr Med Chem, 2019,26(17):3132-3149.

    3. [3]

      Musiol R. An Overview of Quinoline as a Privileged Scaffold in Cancer Drug Discovery[J]. Expert Opin Drug Discov, 2017,12(6):583-597.

    4. [4]

      Suaifan G A R Y, Mohammed A A M. Fluoroquinolones Structural and Medicinal Developments (2013-2018):Where are We Now?[J]. Bioorg Med Chem, 2019,27(14):3005-3060.

    5. [5]

      You Q D, Li Z Y, Huang C H. Discovery of a Novel Series of Quinolone and Naphthyridine Derivatives as Potential Topoisomerase I Inhibitors by Scaffold Modification[J]. J Med Chem, 2009,52(18):5649-5661.

    6. [6]

      Ge R L, Zhao Q, Xie Z L. Synthesis and Biological Evaluation of 6-Fluoro-3-phenyl-7-piperazinyl Quinolone Derivatives as Potential Topoisomerase I Inhibitors[J]. Eur J Med Chem, 2016,122:465-474.

    7. [7]

      XIE Yusuo, GAO Liuzhou, YAN Qiang. Synthesis and Antitumor Activity of Fluoroquinolon-3-yl-s-Triazole Sulfide-ketone Thiosemicarbazone Derivatives of Ofloxacin[J]. Chinese J Appl Chem, 2016,33(1):25-31.

    8. [8]

      LI Yuanyuan, ZHANG Chengxian, HUANG Wenlong. Synthesis and Antitumor Activities of C-3 Thiazolotriazole Unsaturated Ketone Derivatives of Levofloxacoin[J]. Chinese J Appl Chem, 2019,36(6):671-676.

    9. [9]

      ZHANG Huili, LI Ke, HUANG Wenlong. Synthesis and Antitumor Activity of N-Arylidene-Rhodanine Levofloxacin Amides[J]. Chinese J Appl Chem, 2019,36(8):897-903.

    10. [10]

      Zhuang C L, Zhang W, Sheng C Q. Chalcone:A Privileged Structure in Medicinal Chemistry[J]. Chem Rev, 2017,117(12):7762-7810.

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    3. [3]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    4. [4]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    5. [5]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    6. [6]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    7. [7]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    8. [8]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    9. [9]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    10. [10]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    11. [11]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    12. [12]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    13. [13]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    14. [14]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    15. [15]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    16. [16]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    17. [17]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    18. [18]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    19. [19]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    20. [20]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

Metrics
  • PDF Downloads(2)
  • Abstract views(1007)
  • HTML views(187)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return