Citation: CAO Cheng, LIU Zhiyu, JI Xiangdong, SHAO Xiaoxiao, XIAO Hong. Highly Selective Recognition of a Long-Chain Alkoxyphenylhydrozone Derivative for Floride Ion[J]. Chinese Journal of Applied Chemistry, ;2020, 37(12): 1432-1440. doi: 10.11944/j.issn.1000-0518.2020.12.200168 shu

Highly Selective Recognition of a Long-Chain Alkoxyphenylhydrozone Derivative for Floride Ion

  • Corresponding author: JI Xiangdong, jxdsn@163.com
  • Received Date: 3 June 2020
    Revised Date: 7 July 2020
    Accepted Date: 6 August 2020

    Fund Project: the Gansu Provincial Science and Technology Program Funded Project 18JR3RG205the National Natural Science Foundation of China 21761011the Scientific Research Foundation of the Higher Education Institutions of Gansu Province 2018A-088Supported by the National Natural Science Foundation of China(No.21761011), the Gansu Provincial Science and Technology Program Funded Project(No.18JR3RG205) and the Scientific Research Foundation of the Higher Education Institutions of Gansu Province(No.2018A-088)

Figures(11)

  • A new long-chain alkoxyphenylhydrozone derivative, 1-(2, 4-dinitrophenyl)-2-(4-(tetradecyloxy) benzylidene) hydrazine, was designed and synthesized. The ultraviolet-visible (UV-Vis) spectra and naked-eye recognition property of the receptor R for nine kinds of anions (F-, Cl-, Br-, I-, HSO4-, NO3-, ClO4-, H2PO4-, Ac-) were studied. The results indicate that the receptor R shows high UV-Vis and naked-eye recognition property towards F-, Ac- and H2PO4- in dimethylsulfoxide (DMSO) solution. Single colorimetric recognition of F- is found by UV-Vis analysis and naked-eye recognition in H2O/DMSO (1/9) solution, and the LOD (limit of detection) of receptor R for F- is 7.02×10-7 mol/L. The naked recognition paper of receptor R is prepared, and the Job's plot indicates the formation of complex between receptor R and F- is in 1:1 stoichiometric ratios. The recognition mechanism of receptor R is the "hydrogen-bond" recognition.
  • 加载中
    1. [1]

      Brown A, Beer P D. Halogen Bonding Anion Recognition[J]. Chem Commun, 2016,52(56):8645-8658.

    2. [2]

      Xu Y L, Li C T, Cao Q Y. A Pyrenyl-Appended Organogel for Fluorescence Sensing of Anions[J]. Dyes Pigm, 2017,139:681-687.

    3. [3]

      Wang F, Sen S, Chen C. Self-assembled Cagelike Receptor that Binds Biologically Relevant Dicarboxylic Acidsvia Proton-Coupled Anion Recognition[J]. J Am Chem Soc, 2020,142(4):1987-1994.

    4. [4]

      LIN Shengsheng, HE Qingyun, ZHOU Jiamin. Colorimetric Sensors for Anion Recognition Based on Benzeneazophenol[J]. Chinese J Appl Chem, 2019,36(12):1447-1455.

    5. [5]

      Li R, Wang S, Li Q. A Fluorescent Non-conventional Organogelator with Gelation-Assisted Piezochromic and Fluoride-Sensing Properties[J]. Dyes Pigm, 2017,137:111-116.

    6. [6]

      Arabahmadi R. A New Colorimetric Azo-azomethine Probe for Fluoride Ion Detection Based on the Proton Transfer Signaling Mode:Real-life Applications[J]. Anal Bioanal Chem Res, 2018,5:171-182.

    7. [7]

      Gale P A, Caltagirone C. Anion Sensing by Small Molecules and Molecular Ensembles[J]. Chem Soc Rev, 2015,44(13):4212-4227.

    8. [8]

      Aletti A B, Gillen D M, Gunnlaugsson T. Luminescent/colorimetric Probes and (Chemo-) Sensors for Detecting Anions Based on Transition and Lanthanide Ion Receptor/Binding Complexes[J]. Coord Chem Rev, 2018,354:98-120.

    9. [9]

      WEI Xiaokang, GU Jingchi, LIU Xingli. Synthesis and Anion Recognition of Macrocycle Containing Isophthalamide Unit[J]. Chinese J Org Chem, 2018,38:3386-3393.

    10. [10]

      Huang C, Yi R, Chen D M. Synthesis, Crystal Structure and Anion Recognition Property of a Flexible Urea-functionalized Receptor[J]. Chinese J Struct Chem, 2019,38:737-744.

    11. [11]

      Athar M, Lone M Y, Jha P C. Recognition of Anions Using Urea and Thiourea Substituted Calixarenes:A DFT Assessment of Non-covalent Interactions[J]. Chem Phys, 2018,501:68-77.

    12. [12]

      Wezenberg S J, Feringa B L. Photocontrol of Anion Binding Affinity to a Bis-urea Receptor Derived from Stiff-Stilbene[J]. Org Lett, 2017,19:324-327.

    13. [13]

      Tarafdar D, Saha I, Ghosh K. Coumarin-Based Urea-Amide Scaffold in Ratiometric Fluorescence Sensing of CN-[J]. Tetrahedron Lett, 2017,58:2038-2043.

    14. [14]

      Purkait R, Sinha C. Solvent-Tuned Discriminant Sensing of Al3+, Mg2+ and HF2- by Vanilinyl-picolinyl Hydrazide Schiff Base[J]. New J Chem, 2019,43:9815-9823.

    15. [15]

      Gu X J, Bai B L, Wei Z H. Anion Response of Symmetric Hydrazide Derivatives:Dependence on the Number of Hydrazide Units[J]. J Mol Liq, 2016,222:425-429.

    16. [16]

      John A M, Jose J, Thomas R. Spectroscopic and TDDFT Investigation of Highly Selective Fluoride Sensors by Substituted Acyl Hydrazones[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2020,236118329.

    17. [17]

      Saini N, Wannasiri C, Chanmungkalaul S. Furan/thiophene-Based Fluorescent Hydrazones as Fluoride and Cyanide Sensors[J]. J Photochem Photobiol A:Chem, 2019,385112038.

    18. [18]

      Hu J H, Yin Z Y, Gui K. A Novel Supramolecular Polymer Gel-Based Long-Alkyl-Chain-Functionalized Coumarin Acylhydrazone for the Sequential Detection and Separation of Toxic Ions[J]. Soft Matter, 2020,16:1029-1033.

    19. [19]

      Lin Q, Zhu X, Fu Y P. Rationally Designed Anion-Responsive-Organogels:Sensing F- via Reversible Color Changes in Gel-Gel States with Specific Selectivity[J]. Soft Matter, 2014,10:5715-5723.

    20. [20]

      CAO Cheng, WEI Taibao, WANG Aixia. Anion Recognition of Hydrazine Based Receptors[J]. Prog Chem, 2011,23(6):1069-1080.

    21. [21]

      Achalkumar A S, Hiremath U S, Rao D S S. Self-Assembly of Hekates-Tris(N-salicylideneaniline)s into Columnar Structures:Synthesis and Characterization[J]. J Org Chem, 2013,78:527-544.

    22. [22]

      Moghadam F N, Amirnasr M, Meghdadi S. A New Fluorene Derived Schiff-Base as a Dual Selective Fluorescent Probe for Cu2+ and CN-[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2019,207:6-15.

    23. [23]

      Reddy P M, Hsieh S R, Chen J K. Robust, Sensitive and Facile Method for Detection of F-, CN- and Ac- Anions[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2017,186:8-16.

    24. [24]

      Fu Y, Fan C, Liu G. A Colorimetric and Fluorescent Sensor for Cu2+ and F- Based on a Diarylethene with a 1, 8-Naphthalimide Schiff Base Unit[J]. Sens Actuators B, 2017,239:295-303.

    25. [25]

      Sánchez L A, Nonappa , Bhowmik S. Rapid Self-healing and Anion Selectivity in Metallosupramolecular Gels Assisted by Fluorine Fluorine Interactions[J]. Dalton Trans, 2017,46:7309-7316.

    26. [26]

      Benesi H A, Hildebrand J H. A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons[J]. J Am Chem Soc, 1949,71(8):2703-2707.

    27. [27]

      Miller J N, Miller J C. Statistics and Chemometrics for Analytical Chemistry[M]. Pearson Education Limited, England, 2010:124-127

    28. [28]

      Stephens P J, Devlin F J, Chabalowski C F. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields[J]. J Phys Chem, 1994,98:11623-11627.

    29. [29]

      Dwivedi S K, Razi S S, Misra A. Sensitive Colorimetric Detection of CN- and AcO- Anions in a Semi-aqueous Environment Through a Coumarin-Naphthalene Conjugate Azo Dye[J]. New J Chem, 2019,43:5126-5132.

    30. [30]

      Normaya E, Hamdan M F A, Ahmad M N. DFT/TD-DFT Study on Development and Optimization of 1-Anilino-3-phenyliminourea as a Colorimetric Chemosensor for Hg2+ Recognition in Aqueous Medium[J]. J Mol Struct, 2020,1206(15)127699.

  • 加载中
    1. [1]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    2. [2]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    3. [3]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    4. [4]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    5. [5]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    6. [6]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    7. [7]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    8. [8]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    9. [9]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    10. [10]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    11. [11]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    12. [12]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    13. [13]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    14. [14]

      Qiaojia GUOJunkai CAIChunying DUAN . Effects of anions on the structural regulation of Zn-salen-modified metal-organic cage. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2203-2211. doi: 10.11862/CJIC.20240209

    15. [15]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    16. [16]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    17. [17]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    18. [18]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    19. [19]

      Guoze YanBin ZuoShaoqing LiuTao WangRuoyu WangJinyang BaoZhongzhou ZhaoFeifei ChuZhengtong LiYamauchi YusukeMelhi SaadXingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 2404006-0. doi: 10.3866/PKU.WHXB202404006

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(0)
  • Abstract views(897)
  • HTML views(207)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return