Citation: CAO Cheng, LIU Zhiyu, JI Xiangdong, SHAO Xiaoxiao, XIAO Hong. Highly Selective Recognition of a Long-Chain Alkoxyphenylhydrozone Derivative for Floride Ion[J]. Chinese Journal of Applied Chemistry, ;2020, 37(12): 1432-1440. doi: 10.11944/j.issn.1000-0518.2020.12.200168 shu

Highly Selective Recognition of a Long-Chain Alkoxyphenylhydrozone Derivative for Floride Ion

  • Corresponding author: JI Xiangdong, jxdsn@163.com
  • Received Date: 3 June 2020
    Revised Date: 7 July 2020
    Accepted Date: 6 August 2020

    Fund Project: the Gansu Provincial Science and Technology Program Funded Project 18JR3RG205the National Natural Science Foundation of China 21761011the Scientific Research Foundation of the Higher Education Institutions of Gansu Province 2018A-088Supported by the National Natural Science Foundation of China(No.21761011), the Gansu Provincial Science and Technology Program Funded Project(No.18JR3RG205) and the Scientific Research Foundation of the Higher Education Institutions of Gansu Province(No.2018A-088)

Figures(11)

  • A new long-chain alkoxyphenylhydrozone derivative, 1-(2, 4-dinitrophenyl)-2-(4-(tetradecyloxy) benzylidene) hydrazine, was designed and synthesized. The ultraviolet-visible (UV-Vis) spectra and naked-eye recognition property of the receptor R for nine kinds of anions (F-, Cl-, Br-, I-, HSO4-, NO3-, ClO4-, H2PO4-, Ac-) were studied. The results indicate that the receptor R shows high UV-Vis and naked-eye recognition property towards F-, Ac- and H2PO4- in dimethylsulfoxide (DMSO) solution. Single colorimetric recognition of F- is found by UV-Vis analysis and naked-eye recognition in H2O/DMSO (1/9) solution, and the LOD (limit of detection) of receptor R for F- is 7.02×10-7 mol/L. The naked recognition paper of receptor R is prepared, and the Job's plot indicates the formation of complex between receptor R and F- is in 1:1 stoichiometric ratios. The recognition mechanism of receptor R is the "hydrogen-bond" recognition.
  • 加载中
    1. [1]

      Brown A, Beer P D. Halogen Bonding Anion Recognition[J]. Chem Commun, 2016,52(56):8645-8658.

    2. [2]

      Xu Y L, Li C T, Cao Q Y. A Pyrenyl-Appended Organogel for Fluorescence Sensing of Anions[J]. Dyes Pigm, 2017,139:681-687.

    3. [3]

      Wang F, Sen S, Chen C. Self-assembled Cagelike Receptor that Binds Biologically Relevant Dicarboxylic Acidsvia Proton-Coupled Anion Recognition[J]. J Am Chem Soc, 2020,142(4):1987-1994.

    4. [4]

      LIN Shengsheng, HE Qingyun, ZHOU Jiamin. Colorimetric Sensors for Anion Recognition Based on Benzeneazophenol[J]. Chinese J Appl Chem, 2019,36(12):1447-1455.

    5. [5]

      Li R, Wang S, Li Q. A Fluorescent Non-conventional Organogelator with Gelation-Assisted Piezochromic and Fluoride-Sensing Properties[J]. Dyes Pigm, 2017,137:111-116.

    6. [6]

      Arabahmadi R. A New Colorimetric Azo-azomethine Probe for Fluoride Ion Detection Based on the Proton Transfer Signaling Mode:Real-life Applications[J]. Anal Bioanal Chem Res, 2018,5:171-182.

    7. [7]

      Gale P A, Caltagirone C. Anion Sensing by Small Molecules and Molecular Ensembles[J]. Chem Soc Rev, 2015,44(13):4212-4227.

    8. [8]

      Aletti A B, Gillen D M, Gunnlaugsson T. Luminescent/colorimetric Probes and (Chemo-) Sensors for Detecting Anions Based on Transition and Lanthanide Ion Receptor/Binding Complexes[J]. Coord Chem Rev, 2018,354:98-120.

    9. [9]

      WEI Xiaokang, GU Jingchi, LIU Xingli. Synthesis and Anion Recognition of Macrocycle Containing Isophthalamide Unit[J]. Chinese J Org Chem, 2018,38:3386-3393.

    10. [10]

      Huang C, Yi R, Chen D M. Synthesis, Crystal Structure and Anion Recognition Property of a Flexible Urea-functionalized Receptor[J]. Chinese J Struct Chem, 2019,38:737-744.

    11. [11]

      Athar M, Lone M Y, Jha P C. Recognition of Anions Using Urea and Thiourea Substituted Calixarenes:A DFT Assessment of Non-covalent Interactions[J]. Chem Phys, 2018,501:68-77.

    12. [12]

      Wezenberg S J, Feringa B L. Photocontrol of Anion Binding Affinity to a Bis-urea Receptor Derived from Stiff-Stilbene[J]. Org Lett, 2017,19:324-327.

    13. [13]

      Tarafdar D, Saha I, Ghosh K. Coumarin-Based Urea-Amide Scaffold in Ratiometric Fluorescence Sensing of CN-[J]. Tetrahedron Lett, 2017,58:2038-2043.

    14. [14]

      Purkait R, Sinha C. Solvent-Tuned Discriminant Sensing of Al3+, Mg2+ and HF2- by Vanilinyl-picolinyl Hydrazide Schiff Base[J]. New J Chem, 2019,43:9815-9823.

    15. [15]

      Gu X J, Bai B L, Wei Z H. Anion Response of Symmetric Hydrazide Derivatives:Dependence on the Number of Hydrazide Units[J]. J Mol Liq, 2016,222:425-429.

    16. [16]

      John A M, Jose J, Thomas R. Spectroscopic and TDDFT Investigation of Highly Selective Fluoride Sensors by Substituted Acyl Hydrazones[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2020,236118329.

    17. [17]

      Saini N, Wannasiri C, Chanmungkalaul S. Furan/thiophene-Based Fluorescent Hydrazones as Fluoride and Cyanide Sensors[J]. J Photochem Photobiol A:Chem, 2019,385112038.

    18. [18]

      Hu J H, Yin Z Y, Gui K. A Novel Supramolecular Polymer Gel-Based Long-Alkyl-Chain-Functionalized Coumarin Acylhydrazone for the Sequential Detection and Separation of Toxic Ions[J]. Soft Matter, 2020,16:1029-1033.

    19. [19]

      Lin Q, Zhu X, Fu Y P. Rationally Designed Anion-Responsive-Organogels:Sensing F- via Reversible Color Changes in Gel-Gel States with Specific Selectivity[J]. Soft Matter, 2014,10:5715-5723.

    20. [20]

      CAO Cheng, WEI Taibao, WANG Aixia. Anion Recognition of Hydrazine Based Receptors[J]. Prog Chem, 2011,23(6):1069-1080.

    21. [21]

      Achalkumar A S, Hiremath U S, Rao D S S. Self-Assembly of Hekates-Tris(N-salicylideneaniline)s into Columnar Structures:Synthesis and Characterization[J]. J Org Chem, 2013,78:527-544.

    22. [22]

      Moghadam F N, Amirnasr M, Meghdadi S. A New Fluorene Derived Schiff-Base as a Dual Selective Fluorescent Probe for Cu2+ and CN-[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2019,207:6-15.

    23. [23]

      Reddy P M, Hsieh S R, Chen J K. Robust, Sensitive and Facile Method for Detection of F-, CN- and Ac- Anions[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2017,186:8-16.

    24. [24]

      Fu Y, Fan C, Liu G. A Colorimetric and Fluorescent Sensor for Cu2+ and F- Based on a Diarylethene with a 1, 8-Naphthalimide Schiff Base Unit[J]. Sens Actuators B, 2017,239:295-303.

    25. [25]

      Sánchez L A, Nonappa , Bhowmik S. Rapid Self-healing and Anion Selectivity in Metallosupramolecular Gels Assisted by Fluorine Fluorine Interactions[J]. Dalton Trans, 2017,46:7309-7316.

    26. [26]

      Benesi H A, Hildebrand J H. A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons[J]. J Am Chem Soc, 1949,71(8):2703-2707.

    27. [27]

      Miller J N, Miller J C. Statistics and Chemometrics for Analytical Chemistry[M]. Pearson Education Limited, England, 2010:124-127

    28. [28]

      Stephens P J, Devlin F J, Chabalowski C F. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields[J]. J Phys Chem, 1994,98:11623-11627.

    29. [29]

      Dwivedi S K, Razi S S, Misra A. Sensitive Colorimetric Detection of CN- and AcO- Anions in a Semi-aqueous Environment Through a Coumarin-Naphthalene Conjugate Azo Dye[J]. New J Chem, 2019,43:5126-5132.

    30. [30]

      Normaya E, Hamdan M F A, Ahmad M N. DFT/TD-DFT Study on Development and Optimization of 1-Anilino-3-phenyliminourea as a Colorimetric Chemosensor for Hg2+ Recognition in Aqueous Medium[J]. J Mol Struct, 2020,1206(15)127699.

  • 加载中
    1. [1]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    2. [2]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    3. [3]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    4. [4]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Qiaojia GUOJunkai CAIChunying DUAN . Effects of anions on the structural regulation of Zn-salen-modified metal-organic cage. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2203-2211. doi: 10.11862/CJIC.20240209

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    9. [9]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    10. [10]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    11. [11]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    12. [12]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    13. [13]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    14. [14]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    15. [15]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    16. [16]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    17. [17]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    18. [18]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    19. [19]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    20. [20]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

Metrics
  • PDF Downloads(0)
  • Abstract views(661)
  • HTML views(186)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return