Citation: ZHAO Liu, SONG Shengjie, MA Kangfu, WANG Hong, FU Lihua, LIU Xinyang, CHEN Lidong, CHENG Weiguo. Adsorption-Oxidative Desulfurization Performance of Core-Shell Polyoxometalate/Magnetic Cerium-Iron Nanocomposite Oxide@SiO2[J]. Chinese Journal of Applied Chemistry, ;2020, 37(12): 1457-1464. doi: 10.11944/j.issn.1000-0518.2020.12.200152 shu

Adsorption-Oxidative Desulfurization Performance of Core-Shell Polyoxometalate/Magnetic Cerium-Iron Nanocomposite Oxide@SiO2

  • Corresponding author: CHEN Lidong, lidongchhm0809@163.com CHENG Weiguo, wgcheng@ipe.ac.cn
  • Received Date: 19 May 2020
    Revised Date: 10 July 2020
    Accepted Date: 11 August 2020

    Fund Project: Supported by Liaoning Provincial Education Department Serves Local Projects(No.LF2019002), the Research Project on Undergraduate Teaching Reform of General Higher Education in Liaoning Province(No.2018-471), the Special Project of Teacher Education Center of Liaoning Normal University(No.lsjsjyzx201905), "Transformational Technologies for Clean Energy and Demonstration", Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA21030500)Liaoning Provincial Education Department Serves Local Projects LF2019002the Research Project on Undergraduate Teaching Reform of General Higher Education in Liaoning Province 2018-471the Special Project of Teacher Education Center of Liaoning Normal University lsjsjyzx201905"Transformational Technologies for Clean Energy and Demonstration", Strategic Priority Research Program of the Chinese Academy of Sciences XDA21030500

Figures(8)

  • The manganese-cerium mixed iron oxide nanocomposites were synthesized by hydrothermal synthesis method. The surface was wrapped by SiO2 by chemical vapor deposition to prepare the core-shell magnetic material which was then loaded by H2O2 with Keggin structure phosphomolybdic acid (HPMo) to synthesize the HPMo-H2O2/CeFexOy@SiO2 adsorption-oxidative desulfurization catalyst. The catalyst was characterized by SEM, TEM, FT-IR, XRD, 31P MAS-NMR and XPS. The results of SEM, TEM and XPS characterization show that CeFexOy is wrapped by SiO2 to form core-shell nanocomposite material. The Keggin-type structure is retained after being loaded by HPMo-H2O2 and a little peroxophosphomolybdate active species are produced in this process. The active order of different catalysts on the adsorption and oxidation desulfurization presents as the following:HPMo-H2O2/CeFexOy@SiO2>CeFexOy@SiO2>CeFexOy. The introduction of HPMo greatly improves the adsorption activity of organic sulfides, especially its remarkable performance in oxidative desulfurization. The improvement of the performance in oxidative desulfurization is due to the "pseudo-liquid phase" reaction process of polyoxometalate. The dibenzothiophene(DBT) oxidation removal rate reaches 99.4% under such conditions:m(oil):m(catalyst)=35:1, n(H2O2):n(S)=10:1 at 60℃ for 3 h. The prepared magnetic core-shell oxidative-desulfurization catalyst has ideal recycling performance for oxidative removal of DBT. HPMo-H2O2/CeFexOy@SiO2 catalyst becomes a kind of environmental-friendly catalysts with simple preparation method, high catalytic activity and good stability.
  • 加载中
    1. [1]

      Song C S. An Overview of New Approaches to Deep Desulfurization for Ultra-clean Gasoline, Diesel Fuel and Jet Fuel[J]. Catal Today, 2003,86(1/2/3/4):211-263.

    2. [2]

      Julião D, Mirante F, Ribeiro S O. Deep Oxidative Desulfurization of Diesel Fuels Using Homogeneous and SBA-15-Supported Peroxophosphotungstate Catalysts[J]. Fuel, 2019,241:616-624.

    3. [3]

      Bazyari A, Khodadadi A A, Mamaghani A H. Microporous Titania-Silica Nanocomposite Catalyst Adsorbent for Ultra-deep Oxidative Desulfurization[J]. Appl Catal B:Environ, 2016,180(1):65-77.

    4. [4]

      Hou L, Zhang Y Q, Hu Z F. Reduced Phosphomolybdate Hybrids as Efficient Visible-Light Photocatalysts for Cr(Ⅵ) Reduction[J]. Inorg Chem, 2019,58(24):16667-16675.

    5. [5]

      SONG Fangyuan, DING Yong, ZHAO Congchao. Progress in Polyoxometalates-Catalyzed Water Oxidation[J]. Acta Chim Sin, 2014,72(2):133-144.

    6. [6]

      Zhang X M, Zhang Z H, Zhang B H. Synergistic Effect of Zr-MOF on Phosphomolybdic Acid Promotes Efficient Oxidative Desulfurization[J]. Appl Catal B:Environ, 2019,256(1)117804.

    7. [7]

      Xu J J, Zhu Z G, Su T. Green Aerobic Oxidative Desulfurization of Diesel by Constructing an Fe-Anderson Type Polyoxometalate and Benzene Sulfonic Acid-Based Deep Eutectic Solvent Biomimetic Cycle[J]. Chinese J Catal, 2020,41(5):868-876.

    8. [8]

      MA Kangfu, TONG Huan, LIAO Lin. Efficient Shape-Selective Oxidative Desulfurization by Phosphotungstic Acid/Nanocrystalline Catalyst TS-1[J]. Pet Process Petrochem, 2019,50(8):38-45.

    9. [9]

      SONG Shengjie, ZHAO Liu, TONG Huan. Effect of Polyoxometalate Structure on Catalytic Oxidative Desulfurization Performance of Nano-TS-1 Zeolite[J]. Chinese J Appl Chem, 2020,37(8):952-959.

    10. [10]

      Guo P, Huang F, Huang Q. Optimization of Biodiesel Production Using a Magnetically Stabilized Fluidized Bed Reactor[J]. J Am Oil Chem Soc, ,89(3):497-504.

    11. [11]

      Chaudhuri R G, Paria S. Core/Shell Nanoparticles:Classes, Properties, Synthesis Mechanisms, Characterization, and Applications[J]. Chem Rev, 2012,112(4):2373-2433.

    12. [12]

      Wang C X, Zhong H L, Wu W J. Fe3O4@C Core-Shell Carbon Hybrid Materials as Magnetically Separable Adsorbents for the Removal of Dibenzothiophene in Fuels[J]. ACS Omega, 2019,4(1):1652-1661.

    13. [13]

      Li S W, Wang W, Zhao J S. Magnetic-Heteropolyacid Mesoporous Catalysts for Deep Oxidative Desulfurization of Fuel:The Influence on the Amount of APES Used[J]. J Colloid Interface Sci, 2020,57:337-347.

    14. [14]

      LIU Di, TONG Huan, YUAN Linjie. Preparation of High Activity Oxidative Desulfurization Catalyst from Phosphomolybdic Acid and Titania Silica Nanocomposite[J]. Chinese J Appl Chem, 2018,35(11):1351-1356.

    15. [15]

      Li X H, Zhang J, Zhou F. Oxidative Desulfurization of Dibenzothiophene and Diesel by Hydrogen Peroxide:Catalysis of H3PMo12O40 Immobilized on the Ionic Liquid Modified SiO2[J]. Mol Catal, 2018,452:93-99.

    16. [16]

      Xi Z W, Zhou N, Sun Y. Reaction-Controlled Phase-Transfer Catalysis for Propylene Epoxdation to Propylene Oxide[J]. Science, 2001,292(11):1139-1141.

    17. [17]

      Jiang F, Wang X, Wu D. Design and Synthesis of Magnetic Microcapsules Based on n-Eicosane Core and Fe3O4/SiO2 Hybrid Shell for Dual-Functional Phase Change Materials[J]. Appl Energy,, 2014,134:456-468.

    18. [18]

      Zhu W, Zhu G, Li H. Oxidative Desulfurization of Fuel Catalyzed by Metal-Based Surfactant-Type Ionic Liquids[J]. J Mol Catal A:Chem, 2011,347(1/2):8-14.

    19. [19]

      Laguna O H, Centeno M A, Boutonnet M. Fe-Doped Ceria Solids Synthesized by the Microemulsion Method for CO Oxidation Reactions[J]. Appl Catal B:Environ, 2011,106(3/4):621-629.

    20. [20]

      Levebyre F. 31P MAS-NMR Study of H3PW12O40 Supported on Silica:Formation of (SiOH2)+(H2PW12O40)[J]. J Chem Soc Chem Commun, 1992(10):756-757.

    21. [21]

      Huang Y W, Wang Y J, Wei S C. Preparation of Graphene/Fe3O4/Ni Electromagnetic Microwave Absorbing Nano-Composite Materials[J]. Int J Mod Phys B, 2019,33:1-3.

    22. [22]

      Ahmidou L, Vincent P, Ahmed B. Reduction of CeO2 by Hydrogen-Magnetic-Susceptibility and Fourier-Transform Infrared Ultraviolet and X-Ray Photoelectron-Spectroscopy Measurements[J]. J Chem Soc Faraday Trans, 1991,87(10):1601-1609.

    23. [23]

      Xu J, Li H C, Wang S T. Ultra-deep Desulfurization via Reactive Adsorption on Peroxophosphomolybdate/Agarose Hybrids[J]. Chemosphere, 2014,111:631-637.

    24. [24]

      Xu L L, Li W, Hu J L. Transesterification of Soybean Oil to Biodiesel Catalyzed by Mesostructured Ta2O5-Based Hybrid Catalysts Functionalized by Both Alkyl-Bridged Organosilica Moieties and Keggin-Type Heteropoly Acid[J]. J Mater Chem, 2009,19(45):8571-8579.

    25. [25]

      Hernández-Maldonado A J, Yang R T. Desulfurization of Commercial Liquid Fuels by Selective Adsorption via π-Complexation with Cu(Ⅰ)-Y Zeolite[J]. Ind Eng Chem Res, 2003,42(13):3103-3110.

    26. [26]

      LIU Chang, YAN Zhiyi, LI Qiaoling. Research Progress of Selective Adsorption Desulfurization[J]. Chem Ind Eng Prog, 2019,38(11):5114-5126.

    27. [27]

      Misono M. Unique Acid Catalysis of Heteropoly Compounds (Heteropolyoxometalates) in the Solid State[J]. Chem Commum, 2001(13):1141-1153.

  • 加载中
    1. [1]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    2. [2]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    3. [3]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    4. [4]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    5. [5]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    6. [6]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    7. [7]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    8. [8]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    9. [9]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    10. [10]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    11. [11]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    12. [12]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    13. [13]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    14. [14]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    15. [15]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    16. [16]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    18. [18]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    19. [19]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    20. [20]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

Metrics
  • PDF Downloads(5)
  • Abstract views(1327)
  • HTML views(313)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return