Recent Advances in Application of Metal-Orgainic Framework-Derived Catalysts for Hydrogenation of Carbon Dioxide and Fischer-Tropsch Synthesis
- Corresponding author: GUO Xinwen, guoxw@dlut.edu.cn
Citation:
LIU Junhui, SONG Yakun, SONG Chunshan, GUO Xinwen. Recent Advances in Application of Metal-Orgainic Framework-Derived Catalysts for Hydrogenation of Carbon Dioxide and Fischer-Tropsch Synthesis[J]. Chinese Journal of Applied Chemistry,
;2020, 37(10): 1099-1111.
doi:
10.11944/j.issn.1000-0518.2020.10.200128
Zhou W, Cheng K, Kang J. New Horizon in C1 Chemistry:Breaking the Selectivity Limitation in Transformation of Syngas and Hydrogenation of CO2 into Hydrocarbon Chemicals and Fuels[J]. Chem Soc Rev, 2019,48:3193-3228. doi: 10.1039/C8CS00502H
Bao J, Yang G, Yoneyama Y. Significant Advances in C1 Catalysis:Highly Efficient Catalysts and Catalytic Reactions[J]. ACS Catal, 2019,9(4):3026-3053. doi: 10.1021/acscatal.8b03924
Cui W G, Zhang G Y, Hu T L. Metal-organic Framework-Based Heterogeneous Catalysts for the Conversion of C1 Chemistry:CO, CO2 and CH4[J]. Coord Chem Rev, 2019,387:79-120. doi: 10.1016/j.ccr.2019.02.001
Panzone C, Philippe R, Chappaz A. Power-to-Liquid Catalytic CO2 Valorization into Fuels and Chemicals:Focus on the Fischer-Tropsch Route[J]. J CO2 Util, 2020,38:314-347. doi: 10.1016/j.jcou.2020.02.009
Wang W, Wang S, Ma X. Recent Advances in Catalytic Hydrogenation of Carbon Dioxide[J]. Chem Soc Rev, 2011,40(7):3703-3727. doi: 10.1039/c1cs15008a
An Y, Lin T, Yu F. Advances in Direct Production of Value-Added Chemicals via Syngas Conversion[J]. Sci China Chem, 2017,60(7):887-903. doi: 10.1007/s11426-016-0464-1
Dowell N M, Fennell P S, Shah N. The Role of CO2 Capture and Utilization in Mitigating Climate Change[J]. Nat Clim Change, 2017,7(4):243-249. doi: 10.1038/nclimate3231
Li H, Eddaoudi M, O'keeffe M. Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework[J]. Nature, 1999,402(6759):276-279. doi: 10.1038/46248
Perry J J, Perman J A, Zaworotko M J. Design and Synthesis of Metal-Organic Frameworks Using Metal-Organic Polyhedra as Supermolecular Building Blocks[J]. Chem Soc Rev, 2009,38(5):1400-1417. doi: 10.1039/b807086p
Dan Z, Timmons D J, Daqiang Y. Tuning the Topology and Functionality of Metal-Organic Frameworks by Ligand Design[J]. Acc Chem Res, 2011,44(2):123-33. doi: 10.1021/ar100112y
Cui Y, Li B, He H. Metal-Organic Frameworks as Platforms for Functional Materials[J]. Acc Chem Res, 2016,49(3):483-493. doi: 10.1021/acs.accounts.5b00530
Zhang H, Nai J, Yu L. Metal-Organic-Framework-Based Materials as Platforms for Renewable Energy and Environmental Applications[J]. Joule, 2017,1:77-107. doi: 10.1016/j.joule.2017.08.008
Trickett C A, Helal A, Al-Maythalony B A. The Chemistry of Metal-Organic Frameworks for CO2 Capture, Regeneration and Conversion[J]. Nat Rev Mater, 2017,2:1-16.
Qiu S, Xue M, Zhu G. Metal-Organic Framework Membranes:From Synthesis to Separation Application[J]. Chem Soc Rev, 2014,43(16):6116-6140. doi: 10.1039/C4CS00159A
Della Rocca J, Liu D, Lin W. Nanoscale Metal-Organic Frameworks for Biomedical Imaging and Drug Delivery[J]. Acc Chem Res, 2011,44(10):957-968. doi: 10.1021/ar200028a
Wu M X, Yang Y W. Metal-Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy[J]. Adv Mater, 2017,29(23):1606134-1606153. doi: 10.1002/adma.201606134
Yoon M, Srirambalaji R, Kim K. Homochiral Metal-Organic Frameworks for Asymmetric Heterogeneous Catalysis[J]. Chem Rev, 2012,112(2):1196-1231.
Gustafsson M, Bartoszewicz A, Martin-Matute B. A Family of Highly Stable Lanthanide Metal-Organic Frameworks:Structural Evolution and Catalytic Activity[J]. Chem Mater, 2010,22(11):3316-3322. doi: 10.1021/cm100503q
Fu Y, Sun D, Chen Y. An Amine-Functionalized Titanium Metal-Organic Framework Photocatalyst with Visible-Light-Induced Activity for CO2 Reduction[J]. Angew Chem Int Ed, 2011,51:3364-3367.
Dang S, Zhu Q L, Xu Q. Nanomaterials Derived from Metal-Organic Frameworks[J]. Nat Rev Mater, 2018,3(1):17075-17088. doi: 10.1038/natrevmats.2017.75
Bo L, Hiroshi S, Tomoki A. Metal-Organic Framework as a Template for Porous Carbon Synthesis[J]. J Am Chem Soc, 2008,130(16):5390-5391. doi: 10.1021/ja7106146
Oar-Arteta L, Wezendonk T, Sun X. Metal Organic Frameworks as Precursors for the Manufacture of Advanced Catalytic Materials[J]. Mater Chem Front, 2017,1(9):1709-1745. doi: 10.1039/C7QM00007C
Zhao H, Jiang Y, Chen P. CoZn-ZIF-Derived ZnCo2O4-Framework for the Synthesis of Alcohols from Glycerol[J]. Green Chem, 2018,20(18):4299-4307. doi: 10.1039/C8GC01768A
Li R, Zhang W, Zhou K. Metal-Organic-Framework-Based Catalysts for Photoreduction of CO2[J]. Adv Mater, 2018,30(35):1705512-1705542. doi: 10.1002/adma.201705512
Wang Y, Chen X, Lin Q. Nanoporous Carbon Derived from a Functionalized Metal-Organic Framework as a Highly Efficient Oxygen Reduction Electrocatalyst[J]. Nanoscale, 2017,9(2):862-868. doi: 10.1039/C6NR07268B
Cheng N, Ren L, Xu X. Recent Development of Zeolitic Imidazolate Frameworks (ZIFs) Derived Porous Carbon Based Materials as Electrocatalysts[J]. Adv Energy Mater, 2018,8(25)1801257. doi: 10.1002/aenm.201801257
Indra A, Song T, Paik U. Metal Organic Framework Derived Materials:Progress and Prospects for the Energy Conversion and Storage[J]. Adv Mater, 2018,30(39):1705146-1705170. doi: 10.1002/adma.201705146
Wickramaratne N, Jaroniec M. Importance of Small Micropores in CO2 Capture by Phenolic Resin-Based Activated Carbon Spheres[J]. J Mater Chem A, 2013,1(1):112-116. doi: 10.1039/C2TA00388K
Chen Y, Ji S, Wang Y. Isolated Single Iron Atoms Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction[J]. Angew Chem Int Ed, 2017,129(24):6937-6941. doi: 10.1002/ange.201701892
Liu J, Zhang A, Jiang X. Overcoating the Surface of Fe-Based Catalyst with ZnO and Nitrogen-Doped Carbon Toward High Selectivity of Light Olefins in CO2 Hydrogenation[J]. Ind Eng Chem Res, 2019,58(10):4017-4023. doi: 10.1021/acs.iecr.8b05478
Liu J, hang A, Min L. Fe-MOF-Derived Highly Active Catalysts for Carbon Dioxide Hydrogenation to Valuable Hydrocarbons[J]. J CO2 Util, 2017,21:100-107. doi: 10.1016/j.jcou.2017.06.011
Liu J, Sun Y, Xiao J. Pyrolyzing ZIF-8 to N-Doped Porous Carbon Facilitated by Iron and Potassium for CO2 Hydrogenation to Value-added Hydrocarbons[J]. J CO2 Util, 2018,25:120-127. doi: 10.1016/j.jcou.2018.03.015
Adrian R, Gevers L E, Anastasiya B. Metal Organic Framework Derived Iron Catalysts for the Direct Hydrogenation of CO2 to Short Chain Olefins[J]. ACS Catal, 2018,8:9174-9182. doi: 10.1021/acscatal.8b02892
Alain G, Miklos C, John-Paul J. Recycling of Carbon Dioxide to Methanol and Derived Products-Closing the Loop[J]. Chem Soc Rev, 2014,43:7995-8048. doi: 10.1039/C4CS00122B
Olah G A, Goeppert A, Prakash G K S. Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether:From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons[J]. J Org Chem, 2009,74(2):487-498.
Olah G A, Prakash G K S, Goeppert A. Anthropogenic Chemical Carbon Cycle for a Sustainable Future[J]. J Am Chem Soc, 2011,133(33):12881-12898. doi: 10.1021/ja202642y
Jesús G, Kumudu M, Fang X. Catalysis. Highly Active Copper-Ceria and Copper-Ceria-Titania Catalysts for Methanol Synthesis from CO2[J]. Science,, 2014,345(6196):546-550. doi: 10.1126/science.1253057
Francesco, Mezzatesta, Giovanni. Effects of Oxide Carriers on Surface Functionality and Process Performance of the Cu-ZnO System in the Synthesis of Methanol via CO2 Hydrogenation[J]. J Catal, 2013,300(4):141-151.
Bahruji H, Bowker M, Hutchings G. Pd/ZnO Catalysts for Direct CO2 Hydrogenation to Methanol[J]. J Catal, 2016,343:133-146. doi: 10.1016/j.jcat.2016.03.017
Fan L, Fujimoto K. Reaction Mechanism of Methanol Synthesis from Carbon Dioxide and Hydrogen on Ceria-Supported Palladium Catalysts with SMSI Effect[J]. J Catal, 1997,172(1):238-242.
Yin Y, Hu B, Li X. Pd@Zeolitic Zmidazolate Framework-8 Derived PdZn Alloy Catalysts for Efficient Hydrogenation of CO2 to Methanol[J]. Appl Catal B, 2018,234:143-152. doi: 10.1016/j.apcatb.2018.04.024
Hu B, Yin Y, Zhong Z. Cu@ZIF-8 Derived Inverse ZnO/Cu Catalyst with Sub-5 nm ZnO for Efficient CO2 Hydrogenation to Methanol[J]. Catal Sci Technol, 2019,9(10):2673-2681. doi: 10.1039/C8CY02546K
Galletti C, Specchia S, Saracco G. Co-Selective Methanation over Ru-γAl2O3 Catalysts in H2-Rich Gas for PEM FC Applications[J]. Chem Eng Sci, 2010,65:590-596. doi: 10.1016/j.ces.2009.06.052
Lunde P J, Kester F L. Carbon Dioxide Methanation on a Ruthenium Catalyst[J]. Ind Eng Chem Process Des Dev, 1974,13(1):27-33. doi: 10.1021/i260049a005
Du G, Lim S, Yang Y. Methanation of Carbon Dioxide on Ni-Incorporated MCM-41 Catalysts:The Influence of Catalyst Pretreatment and Study of Steady-State Reaction[J]. J Catal, 2007,249(2):370-379.
Stangeland K, Kalai D Y, Li H. Active and Stable Ni Based Catalysts and Processes for Biogas Upgrading:The Effect of Temperature and Initial Methane Concentration on CO2 Methanation[J]. Appl Energy, 2017,227:206-212.
Wang Y, Yao L, Wang Y. Low-Temperature Catalytic CO2 Dry Reforming of Methane on Ni-Si/ZrO2 Catalyst[J]. ACS Catal, 2018,8(7):6495-6506. doi: 10.1021/acscatal.8b00584
Yan Y, Dai Y, He H. A Novel W-Doped Ni-Mg Mixed Oxide Catalyst for CO2 Methanation[J]. Appl Catal B, 2016,196:108-116. doi: 10.1016/j.apcatb.2016.05.016
Liu H, Xu S, Zhou G. CO2 Hydrogenation to Methane over Co/KIT-6 Catalysts:Effect of Co Content[J]. Fuel, 2018,217:570-576. doi: 10.1016/j.fuel.2017.12.112
Liu H, Xu S, Zhou G. CO2 Hydrogenation to Methane over Co/KIT-6 Catalyst:Effect of Reduction Temperature[J]. Chem Eng J, 2018,351:65-73. doi: 10.1016/j.cej.2018.06.087
Li W, Zhang G, Jiang X. CO2 Hydrogenation on Unpromoted and M-Promoted Co/TiO2 Catalysts(M=Zr, K, Cs):Effects of Crystal Phase of Supports and Metal-Support Interaction on Tuning Product Distribution[J]. ACS Catal, 2019,9(4):2739-2751. doi: 10.1021/acscatal.8b04720
Kim A, Debecker D P, Devred F. CO2 Methanation on Ru/TiO2 Catalysts:On the Effect of Mixing Anatase and Rutile TiO2 Supports[J]. Appl Catal B, 2018,220:615-625. doi: 10.1016/j.apcatb.2017.08.058
Petala A, Panagiotopoulou P. Methanation of CO2 over Alkali-Promoted Ru/TiO2 Catalysts:I.Effect of Alkali Additives on Catalytic Activity and Selectivity[J]. Appl Catal B, 2018,224:919-927. doi: 10.1016/j.apcatb.2017.11.048
Li W, Zhang A, Xiao J. Low Temperature CO2 Methanation:ZIF-67-Derived Co-based Porous Carbon Catalysts with Controlled Crystal Morphology and Size[J]. ACS Sustainable Chem Eng, 2017,5(9):7824-7831. doi: 10.1021/acssuschemeng.7b01306
Lin X, Wang S, Tu W. MOF-Derived Hierarchical Hollow Spheres Composed of Carbon-Confined Ni Nanoparticles for Efficient CO2 Methanation[J]. Catal Sci Technol, 2019,9:731-738. doi: 10.1039/C8CY02329H
Lippi R, Howard S C, Barron H. Highly Active Catalyst for CO2 Methanation Derived from a Metal Organic Framework Template[J]. J Mater Chem A, 2017,5(25):12990-12997. doi: 10.1039/C7TA00958E
Centi G, Quadrelli E A, Perathoner S. Catalysis for CO2Conversion:A Key Technology for Rapid Introduction of Renewable Energy in the Value Chain of Chemical Industries[J]. Energy Environ Sci, 2013,6(6):1711-1731. doi: 10.1039/c3ee00056g
Omae I. Recent Developments in Carbon Dioxide Utilization for the Production of Organic Chemicals[J]. Coord Chem Rev, 2012,256(13/14):1384-1405.
Chen C, Cheng W, Lin S. Enhanced Activity and Stability of a Cu/SiO2 Catalyst for the Reverse Water Gas Shift Reaction by an Iron Promoter[J]. Chem Commun, 2001,1770(18):1770-1771.
Sun F M, Yan C F, Wang Z D. Ni/Ce-Zr-O Catalyst for High CO2 Conversion during Reverse Water Gas Shift Reaction (RWGS)[J]. Int J Hydrogen Energy, 2015,40(46):15985-15993. doi: 10.1016/j.ijhydene.2015.10.004
Goguet A, Shekhtman S O, Burch R. Pulse-Response TAP Studies of the Reverse Water-Gas Shift Reaction over a Pt/CeO2 Catalyst[J]. J Catal, 2006,237(1):102-110.
Pettigrew D J, Trimm D L, Cant N W. The Effects of Rare Earth Oxides on the Reverse Water-Gas Shift Reaction on Palladium/Alumina[J]. Catal Lett, 1994,28(2-4):313-319. doi: 10.1007/BF00806061
Wang L C, Khazaneh M T, Widmann D. TAP Reactor Studies of the Oxidizing Capability of CO2 on a Au/CeO2 Catalyst-A First Step Toward Identifying a Redox Mechanism in the Reverse Water-Gas Shift Reaction[J]. J Catal, 2013,302:20-30. doi: 10.1016/j.jcat.2013.02.021
Zhang J, Bing A, Hong Y. Pyrolysis of Metal-Organic Frameworks to Hierarchical Porous Cu/Zn-Nanoparticle@Carbon Materials for Efficient CO2 Hydrogenation[J]. Mater Chem Front, 2017,1:2405-2409. doi: 10.1039/C7QM00328E
Zhang X, Zhu X, Lin L. Highly Dispersed Copper over β-Mo2C as an Efficient and Stable Catalyst for the Reverse Water Gas Shift(RWGS) Reaction[J]. ACS Catal, 2017,7(1):912-918.
Chen C S, Cheng W H, Lin S S. Study of Reverse Water Gas Shift Reaction by TPD, TPR and CO2 Hydrogenation over Potassium-Promoted Cu/SiO2 Catalyst[J]. Appl Catal A, 2003,238(1):55-67.
Dry M E. Fischer-Tropsch Synthesis over Iron Catalysts[J]. Catal Lett, 1990,7(1):241-251.
De Smit E, Cinquini F, Beale A M. Stability and Reactivity of ε-χ-θ Iron Carbide Catalyst Phases in Fischer-Tropsch Synthesis:Controlling μc[J]. J Am Chem Soc, 2010,132(42):14928-14941. doi: 10.1021/ja105853q
Chang Q, Zhang C, Liu C. Relationship Between Iron Carbide Phases (ε-Fe2C, Fe7C3, and χ-Fe5C2) and Catalytic Performances of Fe/SiO2 Fischer-Tropsch Catalysts[J]. ACS Catal, 2018,8:3304-3316. doi: 10.1021/acscatal.7b04085
Wang J, Huang S, Howard S. Elucidating Surface and Bulk Phase Transformation in Fischer-Tropsch Synthesis Catalysts and Their Influences on Catalytic Performance[J]. ACS Catal, 2019,9(9):7976-7983. doi: 10.1021/acscatal.9b01104
Santos V P, Wezendonk T A, Ja n J J D. Metal Organic Framework-Mediated Synthesis of Highly Active and Stable Fischer-Tropsch Catalysts[J]. Nat Commun, 2015,664516458.
Wezendonk T A, Santos V P, Nasalevich M A. Elucidating the Nature of Fe Species During Pyrolysis of the Fe-BTC MOF into Highly Active and Stable Fischer-Tropsch Catalysts[J]. ACS Catal, 2016,6(5):3236-3247. doi: 10.1021/acscatal.6b00426
Oar-Arteta L, Valero-Romero M J, Wezendonk T. Formulation and Catalytic Performance of MOF-Derived Fe@C/Al Composites for High Temperature Fischer-Tropsch Synthesis[J]. Catal Sci Technol, 2018,8:210-220. doi: 10.1039/C7CY01753G
Oschatz M, Krause S, Krans N A. Influence of Precursor Porosity on Sodium and Sulfur Promoted Iron/Carbon Fischer-Tropsch Catalysts Derived from Metal-Organic Frameworks[J]. Chem Commun, 2017,53:10204-10207. doi: 10.1039/C7CC04877G
An B, Cheng K, Wang C. Pyrolysis of Metal-Organic Frameworks to Fe3O4@Fe5C2 Core-Shell Nanoparticles for Fischer-Tropsch Synthesis[J]. ACS Catal, 2016,6:3610-3618. doi: 10.1021/acscatal.6b00464
Lyu S, Li W, Jianghao Z. On the Role of Active Phase for Fischer-Tropsch Synthesis-Experimental Evidence of CO Activation over Single-Phase Cobalt Catalysts[J]. ACS Catal, 2018,8:7787-7798. doi: 10.1021/acscatal.8b00834
Zhong L, Yu F, An Y. Cobalt Carbide Nanoprisms for Direct Production of Lower Olefins from Syngas[J]. Nature, 2016,538(7623):84-87. doi: 10.1038/nature19786
Li Z, Zhong L, Yu F. Effects of Sodium on the Catalytic Performance of CoMn Catalysts for Fischer-Tropsch to Olefin Reactions[J]. ACS Catal, 2017,7:3622-3631. doi: 10.1021/acscatal.6b03478
Li Z, Lin T, Yu F. The Mechanism of Mn Promoter via CoMn Spinel for Morphology Control:Formation of Co2C Nanoprisms for Fischer-Tropsch to Olefins Reaction[J]. ACS Catal, 2017,7:8023-8032. doi: 10.1021/acscatal.7b02144
Yunlei A, Yonghui Z, Fei Y. Morphology Control of Co2C Nanostructures via the Reduction Process for Direct Production of Lower Olefins from Syngas[J]. J Catal, 2018,366:289-299. doi: 10.1016/j.jcat.2018.03.024
Pei Y, Zhong L, Li Y. Highly Active and Selective Co-Based Fischer-Tropsch Catalysts Derived from Metal-Organic Frameworks[J]. Aiche J, 2017,63(7):2935-2944. doi: 10.1002/aic.15677
Qiu B, Yang C, Guo W. Highly Dispersed Co-Based Fischer-Tropsch Synthesis Catalysts from Metal-Organic Frameworks[J]. J Mater Chem A, 2017,5:8081-8086. doi: 10.1039/C7TA02128C
Sun X, Suarez A I O, Meijerink M. Manufacture of Highly Loaded Silica-Supported Cobalt Fischer-Tropsch Catalysts from a Metal Organic Framework[J]. Nat Commun, 2017,8(1):1680-1687.
Chen Y, Li X, Nisa M U. ZIF-67 as Precursor to Prepare High Loading and Dispersion Catalysts for Fischer-Tropsch Synthesis:Particle Size Effect[J]. Fuel, 2019,241:802-812. doi: 10.1016/j.fuel.2018.12.085
Wu T, Lin J, Cheng Y. Porous Graphene-Confined Fe-K as Highly Efficient Catalyst for CO2 Direct Hydrogenation to Light Olefins[J]. ACS Appl Mater Interfaces, 2018,10:23439-23443. doi: 10.1021/acsami.8b05411
Satthawong R, Koizumi N, Song C. Light Olefin Synthesis from CO2 Hydrogenation over K-Promoted Fe-Co Bimetallic Catalysts[J]. Catal Today, 2015,251(1):34-40.
Wang J, You Z, Zhang Q. Synthesis of Lower Olefins by Hydrogenation of Carbon Dioxide over Supported Iron Catalysts[J]. Catal Today, 2013,215(41):186-193.
Cheng Y, Lin J, Wu T. Mg and K Dual-Decorated Fe-on-Reduced Graphene Oxide for Selective Catalyzing CO Hydrogenation to Light Olefins with Mitigated CO2 Emission and Enhanced Activity[J]. Appl Catal B, 2017,204:475-485. doi: 10.1016/j.apcatb.2016.11.058
Ji C, Sang C, Dong H. Highly Activated K-Doped Iron Carbide Nanocatalysts Designed by Computational Simulation for Fischer-Tropsch Synthesis[J]. J Mater Chem A, 2014,2(35):14371-14379. doi: 10.1039/C4TA02413C
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067
Yongzhi LI , Han ZHANG , Gangding WANG , Yanwei SUI , Lei HOU , Yaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005