Citation: YANG Tao, LIU Wenfeng, MA Mengyue, DONG Hongyu, YANG Shuting. Fade Mechanism of Ternary Lithium Ion Power Battery[J]. Chinese Journal of Applied Chemistry, ;2020, 37(10): 1181-1186. doi: 10.11944/j.issn.1000-0518.2020.10.200116 shu

Fade Mechanism of Ternary Lithium Ion Power Battery

Figures(5)

  • Failure analysis is an effective way to analyze the failure phenomena caused by complex physical and chemical changes during battery cycling, optimize the material preparation and the manufacturing processes of battery, and improve the cycle performance. In this paper, after dismantling and analyzing the ternary nickel cobalt manganese (NCM, LiNi0.5Co0.2Mn0.3O2) lithium ion power battery (NCM LIPB) at 1 C in the voltage range of 3~4.2 V for 1000 cycles, it is found that the capacity loss of the cathode electrode is about 2.73%, and the capacity loss of anode electrode is about 2.4%. Comparing the X-ray diffraction and field emission scanning electronic microscope results of cathode and anode electrodes before and after cycling, capacity fade of cathode is mainly caused by the breakage of particles and the structural transformation of the NCM layer. The capacity fade of anode is generated by the damage of graphite layer structure, which is caused by the continuous Li+ de-intercalation during cycling. Moreover, the positive transition cation dissolves and deposits on the surface of electrodes, and catalyzes the side reaction of electrolyte/electrode interface to result in excessive film formation and loss of active lithium, which affects the dynamics of electrode process, one of the reasons for battery failure.
  • 加载中
    1. [1]

      Etacheri V, Marom R, Elazari R. Challenges in the Development of Advanced Li-Ion Batteries:A Review[J]. Energy Environ Sci, 2011,4(9):3243-3262. doi: 10.1039/c1ee01598b

    2. [2]

      Goriparti S, Miele EDe Angelis F. Review on Recent Progress of Nanostructured Anode Materials for Li-Ion Batteries[J]. J Power Sources, 2014,257:421-443. doi: 10.1016/j.jpowsour.2013.11.103

    3. [3]

      Lu L, Han X, Li J. A Review on the Key Issues for Lithium-ion Battery Management in Electric Vehicles[J]. J Power Sources, 2013,226:272-288. doi: 10.1016/j.jpowsour.2012.10.060

    4. [4]

      WANG Qiyu, WANG Shuo, ZHANG Jie'nan. Overview of Lithium Ion Battery Failure Analysis[J]. Energy Storage Sci Technol, 2017,6(5):1008-1023.  

    5. [5]

      Arorat P, White R. Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries[J]. J Electrochem Soc, 1998,145:3647-3667. doi: 10.1149/1.1838857

    6. [6]

      RAO Sumin, LI Chengliang. Reasons for Lithium Ion Battery Failure and Material Interface Energy Reduction[J]. Power Supply Technol, 2017,41:1528-1564.  

    7. [7]

      Watanabe S, Kinoshita M, Hosokawa T. Capacity Fade of LiAlyNi1-x-yCoxO2 Cathode for Lithium-Ion Batteries During Accelerated Calendar and Cycle Life Tests (Surface Analysis of LiAlyNi1-x-yCoxO2 Cathode After Cycle Tests in Restricted Depth of Discharge Ranges)[J]. J Power Sources, 2014,258:210-217. doi: 10.1016/j.jpowsour.2014.02.018

    8. [8]

      Bettge M, Li Y, Gallagher K. Voltage Fade of Layered Oxides:Its Measurement and Impact on Energy Density[J]. J Electrochem Soc, 2013,160(11):A2046-A2055. doi: 10.1149/2.034311jes

    9. [9]

      WANG Weina, ZHENG Jianjie. Analysis on the Decline Mechanism of Storage Life of Lithium Ion Batteries Used in Space[J]. Power Supply Technol, 2019,43:1605-1607.  

    10. [10]

      CHEN Xiaoxuan, LI Sheng, HU Yonggang. Failure Mode Analysis of Ternary Layered Oxide Anode Materials for Lithium Ion Batteries[J]. Energy Storage Sci Technol, 2019,8:1003-1016.  

    11. [11]

      Biasi L, Schwarz B, Brezesinski T. Chemical, Structural, and Electronic Aspects of Formation and Degradation Behavior on Different Length Scales of Ni-Rich NCM and Li-Rich HE-NCM Cathode Materials in Li-Ion Batteries[J]. Adv Mater, 2019,31(26)e1900985. doi: 10.1002/adma.201900985

    12. [12]

      Zhou H, Xin F, Pei B. What Limits the Capacity of Layered Oxide Cathodes in Lithium Batteries?[J]. ACS Energy Lett, 2019,4(8):1902-1906. doi: 10.1021/acsenergylett.9b01236

    13. [13]

      Weigel T, Schipper F, Erickson E. Structural and Electrochemical Aspects of LiNi0.8Co0.1Mn0.1O2 Cathode Materials Doped by Various Cations[J]. ACS Energy Lett, 2019:508-516.  

    14. [14]

      Ran Q, Zhao H, Hu Y. Enhanced Electrochemical Performance of Dual-conductive Layers Coated Ni-rich LiNi0.6Co0.2Mn0.2O2 Cathode for Li-Ion Batteries at High Cut-Off Voltage[J]. Electrochim Acta, 2018,289:82-93. doi: 10.1016/j.electacta.2018.08.091

    15. [15]

      Leanza D, Vaz C, Melinte G. Revealing the Dual Surface Reaction on a HE-NCM Li-Ion Battery Cathode and Their Impact on the Counter Electrode[J]. ACS Appl Mater Interfaces, 2019,11(6):6054-6065. doi: 10.1021/acsami.8b19511

    16. [16]

      Cao Y, Qi X, Hu K. Conductive Polymers Encapsulation to Enhance Electrochemical Performance of Ni-Rich Cathode Materials for Li-Ion Batteries[J]. ACS Appl Mater Interfaces, 2018,10(21):18270-18280. doi: 10.1021/acsami.8b02396

    17. [17]

      Hekmatfar M, Kazzazi A, Eshetu G. Understanding the Electrode/Electrolyte Interface Layer on the Li-Rich Nickel Manganese Cobalt Layered Oxide Cathode by XPS[J]. ACS Appl Mater Interfaces, 2019,11(46):43166-43179. doi: 10.1021/acsami.9b14389

    18. [18]

      Gao H, Cai J, Xu G. Surface Modification for Suppressing Interfacial Parasitic Reactions of a Nickel-Rich Lithium-Ion Cathode[J]. Chem Mater, 2019,31(8):2723-2730. doi: 10.1021/acs.chemmater.8b04200

    19. [19]

      Alcántara R, Jaraba M, Lavela P. X-Ray Diffraction and Electrochemical Impedance Spectroscopy Study of Zinc Coated LiNi0.5Mn1.5O4 Electrodes[J]. J Electroanal Chem, 2004,566(1):187-192.  

    20. [20]

      Gopalakrishnan R, Li Y, Smekens J. Electrochemical Impedance Spectroscopy Characterization and Parameterization of Lithium Nickel Manganese Cobalt Oxide Pouch Cells:Dependency Analysis of Temperature and State of Charge[J]. Ionics, 2019,25:111-123. doi: 10.1007/s11581-018-2595-2

  • 加载中
    1. [1]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    2. [2]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    7. [7]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    8. [8]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    9. [9]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    10. [10]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    11. [11]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    12. [12]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    13. [13]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    14. [14]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    15. [15]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    16. [16]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    17. [17]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    18. [18]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    19. [19]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    20. [20]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

Metrics
  • PDF Downloads(58)
  • Abstract views(2972)
  • HTML views(1287)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return