Citation: CHENG Yinjie, ZHANG Lu, HU Renjie, WANG Ying, JIN Xuexin, QIU Shuo, ZHANG Haoyan, JIANG Dawei. Preparation and Characterization of Hydrogen-Bonded Carbon Nanotubes Reinforced Self-healing Composites[J]. Chinese Journal of Applied Chemistry, ;2020, 37(10): 1147-1155. doi: 10.11944/j.issn.1000-0518.2020.10.200112 shu

Preparation and Characterization of Hydrogen-Bonded Carbon Nanotubes Reinforced Self-healing Composites

  • Corresponding author: JIANG Dawei, sharkwei12345@163.com
  • Received Date: 19 April 2020
    Revised Date: 22 June 2020
    Accepted Date: 20 July 2020

    Fund Project: the Fundamental Research Funds for the Central Universities 2572018BC27the Project of Heilongjiang Provincial Youth Science Foundation QC2017038Heilongjiang Provincial Government Postdoctoral Grants LBH-Z16004Heilongjiang Province Postdoctoral Special Funding LBH-TZ13China Postdoctoral Science Foundation Grant 2016M601402Supported by the Fundamental Research Funds for the Central Universities(No.2572018BC27), the Project of Heilongjiang Provincial Youth Science Foundation(No.QC2017038), Heilongjiang Province Postdoctoral Special Funding(No.LBH-TZ13), Heilongjiang Provincial Government Postdoctoral Grants(No.LBH-Z16004) and China Postdoctoral Science Foundation Grant(No.2016M601402)

Figures(10)

  • The hydrogen-bonded self-healing composites were manufactured successfully (dimer acid, diethylenetriamine, and urea as raw materials, and carbon nanotubes as reinforcing agents). The composites have good mechanical properties and can self-heal at room-temperature (30 ℃). The mechanism of self-healing was proposed in the paper. The stress-strain tests were performed on self-healing composites with different amounts of carbon nanotubes. It is found that the stress and the strain of the composites increases with the increased addition of carbon nanotubes. The stress of composites can reach 4 MPa and the strain increases more than 6% as 9% (mass fraction) of carbon nanotubes is added into the composites. The surface morphology, self-repairing performance and thermal stability of the self-healing composites with 9% (mass fraction) of carbon nanotubes were tested. The results show that carbon nanotubes have good compatibility with the material, and the morphologies of the surface and fracture surface of the cut composites are similar. The self-healing efficiency of composites can reach 100% at room temperature for 24 h. The self-healing efficiency is more than 90% after 10 fracture-healing cycles. The composites have excellent thermal stability, and the temperature at the maximum mass loss rate is 474 ℃. The composites provide an option for next-generation skin sensors and wearable smart devices.
  • 加载中
    1. [1]

      Guimard N K, Oehlenschlaeger K K, Zhou J. Current Trends in the Field of Self-healing Materials[J]. Macromol Chem Phys, 2012,213(2):131-143. doi: 10.1002/macp.201100442

    2. [2]

      Cheng K, Huang C, Wei Y. Novel Chitosan-Cellulose Nanofiber Self-healing Hydrogels to Correlate Self-healing Properties of Hydrogels with Neural Regeneration Effects[J]. NPG Asia Mater, 2019,11(1)25. doi: 10.1038/s41427-019-0124-z

    3. [3]

      Lei Z, Wang Q, Sun S. A Bioinspired Mineral Hydrogel as a Self-healable, Mechanically Adaptable Ionic Skin for Highly Sensitive Pressure Sensing[J]. Adv Mater, 2017,29(22)1700321. doi: 10.1002/adma.201700321

    4. [4]

      Dubal D P, Chodankar N R, Kim D. Towards Flexible Solid-State Supercapacitors for Smart and Wearable Electronics[J]. Chem Soc Rev, 2018,47(6):2065-2129. doi: 10.1039/C7CS00505A

    5. [5]

      Chen J, Huang Y, Ma X. Functional Self-Healing Materials and Their Potential Applications in Biomedical Engineering[J]. Adv Compos Hybrid Mater, 2017,11:1-20.  

    6. [6]

      Mcdonald S A, Coban S B, Sottos N R. Tracking Capsule Activation and Crack Healing in a Microcapsule-Based Self-healing Polymer[J]. Sci Rep, 2019,9(1)17773. doi: 10.1038/s41598-019-54242-7

    7. [7]

      Wang Y, Jiang D, Zhang L. Hydrogen Bonding Derived Self-healing Polymer Composites Reinforced with Amidation Carbon Fibers[J]. Nanotechnology, 2020,31(2)25704. doi: 10.1088/1361-6528/ab4743

    8. [8]

      Macedo L G, Orozco F, Picchioni F. Electrically Self-Healing Thermoset MWCNTs Composites Based on Diels-Alder and Hydrogen Bonds[J]. Polymers, 2019,11(11)1885. doi: 10.3390/polym11111885

    9. [9]

      Li C H, Zuo J L. Self-healing Polymers Based on Coordination Bonds[J]. Adv Mater, 2020,321903762.

    10. [10]

      Wang Z, Xie C, Yu C. A Facile Strategy for Self-healing Polyurethanes Containing Multiple Metal-Ligand Bonds[J]. Macromol Rapid Commun, 2018,39(6)1700678. doi: 10.1002/marc.201700678

    11. [11]

      Chang K, Jia H, Gu S. A transparent, Highly Stretchable, Self-healing Polyurethane Based on Disulfide Bonds[J]. Eur Polym J, 2019,112:822-831. doi: 10.1016/j.eurpolymj.2018.11.005

    12. [12]

      Wang Y, Li Y, Bai J. A Robust and High Self-healing Efficiency Poly(Urea-Urethane) Based on Disulfide Bonds with Cost-Effective Strategy[J]. Macromol Chem Phys, 20191900340.  

    13. [13]

      Debroy S, Pavan Kumar Miriyala V, Vijaya Sekhar K. Self Healing Nature of Bilayer Graphene[J]. Superlattices Microstruct, 2016,96:26-35. doi: 10.1016/j.spmi.2016.05.010

    14. [14]

      Li S, Wang L, Yu X. Synthesis and Characterization of a Novel Double Cross-linked Hydrogel Based on Diels-Alder Click Reaction and Coordination Bonding[J]. Mater Sci Eng C, 2018,82:299-309. doi: 10.1016/j.msec.2017.08.031

    15. [15]

      Kang J, Son D, Wang G N. Tough and Water-Insensitive Self-healing Elastomer for Robust Electronic Skin[J]. Adv Mater, 2018,30(13)1706846. doi: 10.1002/adma.201706846

    16. [16]

      Cordier P, Tournilhac F, Soulie-Ziakovic C. Self-healing and Thermoreversible Rubber from Supramolecular Assembly[J]. Nature, 2008,451(7181):977-980. doi: 10.1038/nature06669

    17. [17]

      Rao C N, Satishkumar B C, Govindaraj A. Nanotubes[J]. Chemphyschem, 2001,2(2):78-105. doi: 10.1002/1439-7641(20010216)2:2<78::AID-CPHC78>3.0.CO;2-7

    18. [18]

      Siddons G P, Merchin D, Back J H. Highly Efficient Gating and Doping of Carbon Nanotubes with Polymer Electrolytes[J]. Nano Lett, 2004,4(5):927-931. doi: 10.1021/nl049612y

    19. [19]

      Ajayan P M, Stephan O, Colliex C. Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin-Nanotube Composite[J]. Science, 1994,265(5176):1212-1214. doi: 10.1126/science.265.5176.1212

    20. [20]

      Hsiao A, Tsai S, Hsu M. Decoration of Multi-Walled Carbon Nanotubes by Polymer Wrapping and Its Application in MWCNT/Polyethylene Composites[J]. Nanoscale Res Lett, 2012,7(40):1-5.  

    21. [21]

      Aguiar V O, Pita V J R R, Marques M D F V. Nanocomposites of Ultrahigh Molar Mass Polyethylene and Modified Carbon Nanotubes[J]. J Appl Polym Sci, 2019,136(19)47459. doi: 10.1002/app.47459

    22. [22]

      Shen L, Liu L, Wu Z. Tensile Mechanical Behaviors of High Loading of Carbon Nanotube/Epoxy Composites via Experimental and Finite Element Analysis[J]. Adv Eng Mater, 20191900895.  

    23. [23]

      Isarn I, Bonnaud L, Massagues L. Study of the Synergistic Effect of Boron Nitride and Carbon Nanotubes in the Improvement of Thermal Conductivity of Epoxy Composites[J]. Polym Int, 2020,69(3):280-290. doi: 10.1002/pi.5949

    24. [24]

      Yuen S, Ma C M, Chiang C. Preparation and Morphological, Electrical, and Mechanical Properties of Polyimide-Grafted MWCNT/Polyimide Composite[J]. J Polym Sci Pol Chem, 2007,45(15):3349-3358. doi: 10.1002/pola.22085

    25. [25]

      Lee C, Liu J, Chen S. Miscibility and Properties of Acid-Treated Multi-walled Carbon Nanotubes/Polyurethane Nanocomposites[J]. Polym J, 2007,39(2):138-146.  

    26. [26]

      Sahoo N G, Rana S, Cho J W. Polymer Nanocomposites Based on Functionalized Carbon Nanotubes[J]. Prog Polym Sci, 2010,35(7):837-867. doi: 10.1016/j.progpolymsci.2010.03.002

    27. [27]

      Hirsch A. Functionalization of Single-walled Carbon Nanotubes[J]. Angew Chem, 2002,41(11):1853-1859. doi: 10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N

    28. [28]

      Kuan H C, Ma C, Chang W P. Synthesis, Thermal, Mechanical and Rheological Properties of Multiwall Carbon Nano Tube/Waterborne Polyurethane Nanocomposite[J]. Compos Sci Technol, 2005,65(11/12):1703-1710.

    29. [29]

      Sahoo N G, Jung Y C, Yoo H J. Influence of Carbon Nanotubes and Polypyrrole on the Thermal, Mechanical and Electroactive Shape-Memory Properties of Polyurethane Nanocomposites[J]. Compos Sci Technol, 2007,67(9):1920-1929. doi: 10.1016/j.compscitech.2006.10.013

    30. [30]

      Sahoo N G, Jung Y C, Yoo H J. Effect of Functionalized Carbon Nanotubes on Molecular Interaction and Properties of Polyurethane Composites[J]. Macromol Chem Phys, 2006,207(19):1773-1780. doi: 10.1002/macp.200600266

    31. [31]

      Marialuigia R, Carlo N, Luigi V. Multifunctionality of Structural Nanohybrids:The Crucial Role of Carbon Nanotube Covalent and Non-Covalent Functionalization in Enabling High Thermal, Mechanical and Self-healing Performance[J]. Nanotechnology, 2020,31(22)225708. doi: 10.1088/1361-6528/ab7678

    32. [32]

      Xing L, Li Q, Zhang G. Self-healable Polymer Nanocomposites Capable of Simultaneously Recovering Multiple Functionalities[J]. Adv Funct Mater, 2016,26(20):3524-3531. doi: 10.1002/adfm.201505305

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    3. [3]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    4. [4]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    5. [5]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    6. [6]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    7. [7]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    8. [8]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    9. [9]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    10. [10]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    11. [11]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    12. [12]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    13. [13]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    14. [14]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    15. [15]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    16. [16]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    17. [17]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    18. [18]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    19. [19]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    20. [20]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

Metrics
  • PDF Downloads(8)
  • Abstract views(986)
  • HTML views(215)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return