Citation: LI Wenjie, WANG Lixue, SUN Linghui, YOU Wei, ZHAO Yabin. Progress in Matrix-Assisted Laser Desorption Mass Spectrometry Imaging for Fingerprint Analysis[J]. Chinese Journal of Applied Chemistry, ;2020, 37(10): 1137-1146. doi: 10.11944/j.issn.1000-0518.2020.10.200108 shu

Progress in Matrix-Assisted Laser Desorption Mass Spectrometry Imaging for Fingerprint Analysis

  • Corresponding author: ZHAO Yabin, zhaoyb04@gmail.com
  • Received Date: 14 April 2020
    Revised Date: 19 May 2020
    Accepted Date: 11 June 2020

    Fund Project: Basic Research Project of People's Public Security University of China 2019JKF216Supported by the Basic Research Project of People's Public Security University of China(No.2019JKF216)

Figures(5)

  • Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a soft ionization mass spectrometry technique with high sensitivity, high throughput and simultaneous analysis of multi-components. It can confirm the molecular structure and obtain the material distribution information through the material analysis and has gained more and more attention in fingerprint analysis. Starting from the condition optimization, this paper describes the process of matrix optimization. Then, the specific application of MALDI-MS imaging (MALDI-MSI) in the field of fingerprint analysis is introduced. In the aspect of morphological analysis, the influence of the combination of MALDI-MSI and the conventional development methods on the imaging effect and the image processing of the difficult fingerprint is summarized. In terms of chemical information analysis and research, the advantages and limitations of each research are reviewed from the perspective of analyzing living habits/pre-crime activities, fingerprint residual time and individual identity based on MS information, and the future development of MALDI-MSI in the field of fingerprint is proposed.
  • 加载中
    1. [1]

      Christophe C, Chris L, Pierre M. Fingerprints and Other Ridge Skin Impressions, Second Edition[M]. CRC Press, 2016:3-6.

    2. [2]

      Cai L, Xia M C, Wang Z Y. Chemical Visualization of Sweat Pores in Fingerprints Using GO-Enhanced TOF-SIMS[J]. Anal Chem, 2017,89(16):8372-8376. doi: 10.1021/acs.analchem.7b01629

    3. [3]

      Samuel C, Meez I, Peter M. Fingerprint Composition and Aging:A Literature Review[J]. Sci Justice, 2015,55(4):219-238. doi: 10.1016/j.scijus.2015.02.004

    4. [4]

      Pompi H, Sue M J, David A R. Rapid Detection of Drug Metabolites in Latent Fingermarks[J]. The Analyst, 2009,134(1):93-96.  

    5. [5]

      Amanda M B, David A R. Simultaneous Development and Detection of Drug Metabolites in Latent Fingermarks Using Antibody magnetic Particle Conjugates[J]. Anal Methods, 2011,3(3):519-523. doi: 10.1039/c1ay05009e

    6. [6]

      Aline G, Robert B, Céline W. Composition of Fingermark Residue:A Qualitative and Quantitative Review[J]. Forensic Sci Int, 2012,223(1/2/3):10-24.

    7. [7]

      Rosalind W, Robert B, Malcolm R. Study of Latent Fingermarks by Matrix-assisted Laser Desorption/Ionisation Mass Spectrometry Imaging of Endogenous Lipids[J]. Rapid Commun Mass Spectrom, 2009,23(19)30313039.

    8. [8]

      Leesa F, Robert B, Rosalind W. Two-Step Matrix Application for the Enhancement and Imaging of Latent Fingermarks[J]. Anal Chem, 2011,83(14):5585-5591. doi: 10.1021/ac200619f

    9. [9]

      Leesa F, Stuart C, Rosalind W. Efficiency of the Dry-Wet Method for the MALDI-MSI Analysis of Latent Fingermarks[J]. J Mass Spectrom, 2013,48:677-684. doi: 10.1002/jms.3216

    10. [10]

      Simona, Robert, Flinders. Curcumin:A Multipurpose Matrix for MALDI Mass Spectrometry Imaging Applications[J]. Anal Chem, 2013,85(10):5240-5248. doi: 10.1021/ac4007396

    11. [11]

      Nidia L, Martin D, Vinita C. Development of Laser Desorption Imaging Mass Spectrometry Methods to Investigate the Molecular Composition of Latent Fingermarks[J]. J Am Soc Mass Spectrom, 2015,26:878-886. doi: 10.1007/s13361-015-1123-0

    12. [12]

      Paige H, Young J. Carbon-Based Fingerprint Powder as a One-Step Development and Matrix Application for High-Resolution Mass Spectrometry Imaging of Latent Fingerprints[J]. J Forensic Sci, 2019,64(4):1048-1056. doi: 10.1111/1556-4029.13981

    13. [13]

      Scotcher , Robert B. The Analysis of Latent Fingermarks on Polymer Banknotes Using MALDI-MS[J]. Sci Rep, 2018,88765. doi: 10.1038/s41598-018-27004-0

    14. [14]

      Robert B, Rao , Rosalind W. Separation of Overlapping Fingermarks by Matrix Assisted Laser Desorption Ionisation Mass Spectrometry Imaging[J]. Forensic Sci Int, 2012,222(1/2/3):318-326.  

    15. [15]

      Robert B, Rosalind W, Robert D B. A Novel Matrix-Assisted Laser Desorption/Ionisation Mass Spectrometry Imaging Based Methodology for the Identification of Sexual Assault Suspects[J]. Rapid Commun Mass Spectrom, 2011,25:415-422. doi: 10.1002/rcm.4858

    16. [16]

      Paige H, Kelly C O, Young J L. Revealing Individual Lifestyles Through Mass Spectrometry Imaging of Chemical Compounds in Fingerprints[J]. Sci Rep, 2018,85149. doi: 10.1038/s41598-018-23544-7

    17. [17]

      Robert B, Bleay S, Clench M R. Direct Detection of Blood in Fingermarks by MALDI MS Profiling and Imaging[J]. Sci Justice, 2014,54(2):110-117. doi: 10.1016/j.scijus.2013.12.004

    18. [18]

      Kelly C O, Young J L. Effect of Aging and Surface Interactions on the Diffusion of Endogenous Compounds in Latent Fingerprints Studied by Mass Spectrometry Imaging[J]. J Forensic Sci, 2018,63(3):708-713. doi: 10.1111/1556-4029.13591

    19. [19]

      Paige H, Madison T, Young J L. Determining Fingerprint Age with Mass Spectrometry Imaging via Ozonolysis of Triacylglycerols[J]. Anal Chem, 2020,92(4):3125-3132.  

    20. [20]

      Marie G, Marc A, Aurélien T. Molecular Composition of Fingermarks:Assessment of the Intra-and Inter-variability in a Small Group of Donors Using MALDI-MSI[J]. Forensic Chem, 2019,12:99-106. doi: 10.1016/j.forc.2018.12.002

    21. [21]

      Simona F, Robert B, Leesa F. Beyond the Ridge Pattern:Multi-informative Analysis of Latent Fingermarks by MALDI Mass Spectrometry[J]. Analyst, 2013,138:4215-4228. doi: 10.1039/c3an36896c

    22. [22]

      Leszyk J D. Evaluation of the New MALDI Matrix 4-Chloro-α-Cyanocinnamic Acid[J]. J Biomol Tech, 2010,21(2):81-91.  

    23. [23]

      Scott D H, David M P. Extending the Solvent-Free MALDI Sample Preparation Method[J]. J Am Soc Mass Spectrom, 2005,16:90-93. doi: 10.1016/j.jasms.2004.09.019

    24. [24]

      Li B, Comi T J, Si T. A One-step Matrix Application Method for MALDI Mass Spectrometry Imaging of Bacterial Colony Biofilms[J]. J Mass Spectrom, 2016,51(11):1030-1035. doi: 10.1002/jms.3827

    25. [25]

      Goodwin, Macintyre, Watson. A Solvent-free Matrix Application Method for Matrix-Sssisted Laser Desorption/ionization Imaging of Small Molecules[J]. Rapid Commun Mass Spectrom, 2010,24(11):1682-1686. doi: 10.1002/rcm.4567

    26. [26]

      Robert C M, Joseph A H, Robert M B. MALDI Imaging of Lipids After Matrix Sublimation/deposition[J]. Biochim Biophys Acta, 2011,1811(11):970-975. doi: 10.1016/j.bbalip.2011.04.012

    27. [27]

      Erin G, Stephanie R, Lingjun L. Optimization and Comparison of Multiple MALDI Matrix Application Methods for Small Molecule Mass Spectrometric Imaging[J]. Anal Chem, 2014,86(20):10030-10035. doi: 10.1021/ac5028534

    28. [28]

      LUO Zhigang, He Jiuming, Liu Yueying. Advances in Mass Spectrometry Imaging and Its Application[J]. Sci China Chem, 2014,44(5):147-152.  

    29. [29]

      XU Jingyang, FANG Shaobo, ZHOU Jing. Application of Hyperspectral Imaging and Mass Spectrometry Imaging Technique to Fingerprint Visualization and Trace Analysis[J]. Acta Phys Sin, 2019,68(6):7-16.  

    30. [30]

      ZHAO Yabin, LUO Yaping. Latent Fingermark Development:Literature Review and Prospect[J]. Forensic Sci Tech, 2015(4):312-317.  

    31. [31]

      Zhao Y B, Ma Y J, Song D. New Luminescent Nanoparticles Based on Carbon Dots/SiO2 for the Detection of Latent Fingermarks[J]. Anal Methods, 2017,9:4770-4775. doi: 10.1039/C7AY01316G

    32. [32]

      Davis L W L, Kelly P F, King R S P. Visualisation of Latent Fingermarks on Polymer Banknotes Using Copper Vacuum Metal Deposition:A Preliminary Study[J]. Forensic Sci Int, 2016,266:86-92. doi: 10.1016/j.forsciint.2016.05.010

    33. [33]

      Downham R P, Brewer E R, King R S P. Sequential Processing Strategies for Fingermark Visualisation on Uncirculated £10(Bank of England) Polymer Banknotes[J]. Forensic Sci Int, 2018,288:140-158. doi: 10.1016/j.forsciint.2018.04.018

    34. [34]

      Bandey H, Bowman V, Bleay S. 2014 FingermarkVisualisation Manual[M]. Sandridge Press, 2014:2-18.

    35. [35]

      Robert B, Stephen B, Rosalind W. Towards the Integration of Matrix Assisted Laser Desorption Ionisation Mass Spectrometry Imaging into the Current Fingermark Examination Workflow[J]. Forensic Sci Int, 2013,232:111-124. doi: 10.1016/j.forsciint.2013.07.013

    36. [36]

      Kelly O N, Paige H, Young L. Chemical Imaging of Cyanoacrylate-Fumed Fingerprints by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging[J]. J Forensic Sci, 2018,635980.

    37. [37]

      Groeneveld G, De P M, Bleay S. Detection and Mapping of Illicit Drugs and Their Metabolites in Fingermarks by MALDI MS and Compatibility with Forensic Techniques[J]. Sci Rep, 2015,511716. doi: 10.1038/srep11716

    38. [38]

      Bradshaw R, Denison N, Francese S. Implementation of MALDI MS Profiling and Imaging Methods for the Analysis of Real Crime Scene Fingermarks[J]. The Analyst, 2017,142(9)1581. doi: 10.1039/C7AN00218A

    39. [39]

      Girod, Weyermann, Céline. Lipid Composition of Fingermark Residue and Donor Classification Using GC/MS[J]. Forensic Sci Int, 2014,238:68-82. doi: 10.1016/j.forsciint.2014.02.020

    40. [40]

      Frick A A, Chidlow G, Lewis S W. Investigations into the Initial Composition of Latent Fingermark Lipids by Gas Chromatography-Mass Spectrometry[J]. Forensic Sci Int, 2015,254:133-147. doi: 10.1016/j.forsciint.2015.06.032

    41. [41]

      Emerson B, Gidden J, Lay J O. Laser Desorption/Ionization Time-of-Flight Mass Spectrometry of Triacylglycerols and Other Components in Fingermark Samples[J]. J Forensic Sci, 2011,56(2):381-389. doi: 10.1111/j.1556-4029.2010.01655.x

    42. [42]

      Archer N E, Charles Y, Elliott J A. Changes in the Lipid Composition of Latent Fingerprint Residue with Time after Deposition on a Surface[J]. Forensic Sci Int, 2005,154(2/3):224-239.  

    43. [43]

      Girod A, Ramotowski R, Lambrechts S. Fingermark Age Determinations:Legal Considerations, Review of the Literature and Practical Propositions[J]. Forensic Sci Int, 2016,262:212-226. doi: 10.1016/j.forsciint.2016.03.021

    44. [44]

      Pleik S, Spengler B, Schfer T. Fatty Acid Structure and Degradation Analysis in Fingerprint Residues[J]. J Am Soc Mass Spectrom, 2016,27(9):1565-1574. doi: 10.1007/s13361-016-1429-6

    45. [45]

      Muramoto S, Sisco E. Strategies for Potential Age Dating of Fingerprints Through the Diffusion of Sebum Molecules on a Nonporous Surface Analyzed Using Time-of-Flight Secondary Ion Mass Spectrometry[J]. Anal Chem, 2015,87(16):8035-8038. doi: 10.1021/acs.analchem.5b02018

    46. [46]

      Fritz P, Van Bronswjik W, Lepkova K. Infrared Microscopy Studies of the Chemical Composition of Latent Fingermark Residues[J]. Microchem J, 2013,111:40-46. doi: 10.1016/j.microc.2012.08.005

    47. [47]

      Ferguson L S, Wulfert F, Wolstenholme R. Direct Detection of Peptides and Small Proteins in Fingermarks and Determination of Sex by MALDI Mass Spectrometry Profiling[J]. The Analyst, 2012,137(20)4686. doi: 10.1039/c2an36074h

  • 加载中
    1. [1]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    2. [2]

      Xu Liu Chengfang Liu Jie Huang Xiangchun Li Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, 2024, 39(8): 112-118. doi: 10.3866/PKU.DXHX202402021

    3. [3]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    4. [4]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    5. [5]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    6. [6]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    7. [7]

      Haiyuan Wang Shanshan Cheng Hui Yang . Development and Exploration of the Ideological and Political Education Framework in Applied Chemistry Postgraduate Curriculum. University Chemistry, 2024, 39(6): 72-82. doi: 10.3866/PKU.DXHX202311020

    8. [8]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    9. [9]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    10. [10]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    11. [11]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    12. [12]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    13. [13]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    14. [14]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    15. [15]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    16. [16]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    17. [17]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    18. [18]

      Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043

    19. [19]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    20. [20]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

Metrics
  • PDF Downloads(3)
  • Abstract views(609)
  • HTML views(94)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return