Citation: FU Fengyan, CHENG Jingquan, ZHANG Jie, GAO Zhihua. Recent Development in Ionic Exchange Groups-Based Anion Exchange Membrane[J]. Chinese Journal of Applied Chemistry, ;2020, 37(10): 1112-1126. doi: 10.11944/j.issn.1000-0518.2020.10.200095 shu

Recent Development in Ionic Exchange Groups-Based Anion Exchange Membrane

  • Corresponding author: FU Fengyan, 1374195561@qq.com
  • Received Date: 1 April 2020
    Revised Date: 13 May 2020
    Accepted Date: 4 June 2020

    Fund Project: Colleges and Universities in Hebei Province Science Research Fund BJ2019206Supported by the Colleges and Universities in Hebei Province Science Research Fund(No.BJ2019206), and the Hengshui University High-level Talents Research Start-up Fund

Figures(9)

  • Anion exchange membrane fuel cells (AEMFCs) have attracted worldwide attention. To achieve high performance in AEMFCs, anion exchange membranes (AEMs) should own high ion conductivity and good alkaline stability. AEMs contain cationic groups and polymer backbone, while ionic groups play very important role in determining the overall stability and conductivity for the AEMs apart from polymer backbones. In this paper, the structure, alkaline stability and ion conductivity of AEMs with different kinds of cationic groups such as quaternary ammonium, guanidinium, imidazolium, phosphonium, metal cation, N-spirocyclic cations, piperidinium and pyrrolidinium are introduced in detail, and the development trend of the cationic groups are also discussed.
  • 加载中
    1. [1]

      Merle G, Wessling M, Nijmeijer K. Anion Exchange Membranes for Alkaline Fuel Cells:A Review[J]. J Membr Sci, 2011,377(1/2):1-35.

    2. [2]

      Matsumoto K, Fujigaya T, Yanagi H. Very High Performance Alkali Anion Exchange Membrane Fuel Cell[J]. Adv Funct Mater, 2011,21(6):1089-1094. doi: 10.1002/adfm.201001806

    3. [3]

      Kruusenberg I, Matisen L, Shah Q. Non-platinum Cathode Catalysts for Alkaline Membrane Fuel Cell[J]. Int J Hydrogen Energy, 2012,37(5):4406-4412. doi: 10.1016/j.ijhydene.2011.11.143

    4. [4]

      Maurya S, Shin S H, Kim Y. A Review on Recent Developments of Anion Exchange Membranes for Fuel Cells and Redox Flow Batteries[J]. RSC Adv, 2015,5(47):37206-37230. doi: 10.1039/C5RA04741B

    5. [5]

      Dekel D R. Review of Cell Performance in Anion Exchange Membrane Fuel Cells[J]. J Power Sources, 2018,375:158-169. doi: 10.1016/j.jpowsour.2017.07.117

    6. [6]

      Meek K M, Nykaza J R, Elabd Y A. Alkaline Chemical Stability and Ion Transport in Polymerized Ionic Liquids with Various Backbones and Cations[J]. Macromolecules, 2016,49(9):3382-3394. doi: 10.1021/acs.macromol.6b00434

    7. [7]

      Cheng J, Yang G, Zhang K. Guanidimidazole Quanternized and Cross-linked Alkaline Polymer Electrolyte Membrane for Fuel Cell Application[J]. J Membr Sci, 2016,501:100-108. doi: 10.1016/j.memsci.2015.12.012

    8. [8]

      Gong X, Yan X, Li T. Design of Pendent Imidazolium Side Chain with Flexible Ether Containing Spacer for Alkaline Anion Exchange Membrane[J]. J Membr Sci, 2017,523:216-224. doi: 10.1016/j.memsci.2016.09.050

    9. [9]

      Zhang B, Kaspar R B, Gu S. A New Alkali Stable Phosphonium Cation Based on Fundamental Understangding of Degradation Mechanisms[J]. ChemSusChem, 2016,9(17):2374-2379. doi: 10.1002/cssc.201600468

    10. [10]

      Zha Y P, Disabb-Miller M L, Johnson Z D. Metal-Cation-Based Anion Exchange Membranes[J]. J Am Chem Soc, 2012,134(10):4493-4496. doi: 10.1021/ja211365r

    11. [11]

      Wei Y, Kevin J T N, Geoffrey W C. Alkaline-Stable Anion Exchange Membranes:A Review of Synthetic Approaches[J]. Prog Polym Sci, 2020,100101177. doi: 10.1016/j.progpolymsci.2019.101177

    12. [12]

      Dong X, Hou S, Mao H. Novel Hydrophilic-Hydrophobic Block Copolymer Based on Cardo Poly(arylene ether sulfone)s with Bis-Quaternary Ammonium Moieties for Anion Exchange Membranes[J]. J Membr Sci, 2016,518:31-39. doi: 10.1016/j.memsci.2016.06.036

    13. [13]

      Sun Z, Pan J, Guo J. The Alkaline Stability of Anion Exchange Membrane for Fuel Cell Applications:The Effects of Alkaline Media[J]. Adv Sci, 2018,5(8)1800065. doi: 10.1002/advs.201800065

    14. [14]

      Edson J, Macomber C, Pivovar B. Hydroxide Based Decomposition Pathways of Alkyltrimethylammonium Cations[J]. J Membr Sci, 2012,399:49-59.  

    15. [15]

      Li N, Leng Y, Hickner M A. Highly Stable, Anion Conductive, Comb-Shaped Copolymers for Alkaline Fuel Cells[J]. J Am Chem Soc, 2013,135(27):10124-10133. doi: 10.1021/ja403671u

    16. [16]

      Zhu L, Pan J, Christensen C M. Functionalization of Poly(2, 6-dimethyl-1, 4-phenylene oxide)s with Hindered Fluorene Side Chains for Anion Exchange Membranes[J]. Macromolecules, 2016,49(9):3300-3309. doi: 10.1021/acs.macromol.6b00578

    17. [17]

      Dang H S, Jannasch P. Exploring Different Cationic Alkyl Side Chain Designs for Enhanced Alkaline Stability and Hydroxide Ion Conductivity of Anion-Exchange Membranes[J]. Macromolecules, 2015,48(16):5742-5751. doi: 10.1021/acs.macromol.5b01302

    18. [18]

      Zhang M, Shan C R, Liu L. Facilitating Anion Transport in Polyolefin-Based Anion Exchange Membranes via Bulky Side Chains[J]. ACS Appl Mater Interfaces, 2016,8(35):23321-23330. doi: 10.1021/acsami.6b06426

    19. [19]

      Jeon J Y, Park S, Han J. Synthesis of Aromatic Anion Exchange Membranes by Friedel-Crafts Bromoalkylation and Cross-linking of Polystyrene Block Copolymers[J]. Macromolecules, 2019,52(5):2139-2147. doi: 10.1021/acs.macromol.8b02355

    20. [20]

      Lin B C, Xu F, Su Y. Facile Preparation of Anion-Exchange Membrane Based on Polystyrene-b-Polybutadiene-b-Polystyrene for the Application of Alkaline Fuel Cells[J]. Ind Eng Chem Res, 2019,58(49):22299-22305. doi: 10.1021/acs.iecr.9b05314

    21. [21]

      Peng J W, Liang M H, Liu Z C. Poly(arylene ether sulfone) Crosslinked Networks with Pillar[5] arene Units Grafted by Multiple Long-Chain Quaternary Ammonium Salts for Anion Exchange Membranes[J]. Chem Commun, 2020,56(6):928-931. doi: 10.1039/C9CC07105A

    22. [22]

      Fu F Y, Xu H L, Dong Y. Design of Polyphosphazene-Based Graft Copolystyrenes with Alkylsulfonate Branch Chains for Proton Exchange Membranes[J]. J Membr Sci, 2015,489:119-128. doi: 10.1016/j.memsci.2015.04.016

    23. [23]

      Fu F Y, Xu H L, Dong Y. Polyphosphazene-based Copolymers Containing Pendant Alkylsulfonic Acid Groups as Proton Exchange Membranes[J]. Solid State Ionics, 2015,278:58-64. doi: 10.1016/j.ssi.2015.05.018

    24. [24]

      GAO Li, WU Xuemei, YAN Xiaoming. Alkali Stability of Anion Exchange Membrane[J]. Chinese Sci Bull, 2019,64:145-152.  

    25. [25]

      XUE Boxin, ZHENG Jifu, ZHANG Suobo. Advances in Alkaline Stable Guanidinium Based Anion Exchange Membranes[J]. Chinese Sci Bull, 2019,64:134-144.  

    26. [26]

      Wang J, Li S, Zhang S. Novel Hydroxide-Conducting Polyelectrolyte Composed of an Poly(arylene ether sulfone) Containing Pendant Quaternary Guanidinium Groups for Alkaline Fuel Cell Applications[J]. Macromolecules, 2010,43(8):3890-3896.  

    27. [27]

      Lin X, Wu L, Liu Y. Alkali Resistant and Conductive Guanidinium-Based Anion-Exchange Membranes for Alkaline Polymer Electrolyte Fuel Cells[J]. J Power Sources, 2012,217:373-380. doi: 10.1016/j.jpowsour.2012.05.062

    28. [28]

      Qu C, Zhang H, Zhang F. A High-Performance Anion Exchange Membrane Based on Bi-Guanidinium Bridged Polysilsesquioxane for Alkaline Fuel Cell Application[J]. J Mater Chem, 2012,22(17):8203-8207. doi: 10.1039/c2jm16211c

    29. [29]

      Sajjada S, Hong Y, Liu F. Synthesis of Guanidinium-Based Anion Exchange Membranes and Their Stability Assessment[J]. Polym Adv Technol, 2014,25(1):108-116.  

    30. [30]

      Kim D, Fujimoto C, Hibbs M. Resonance Stabilized Perfluorinated Ionomers for Alkaline Membrane Fuel Cells[J]. Macromolecules, 2013,46(19):7826-7833. doi: 10.1021/ma401568f

    31. [31]

      Cheng J, Yang G, Zhang K. Guanidimidazole-Quanternized and Cross-linked Alkaline Polymer Electrolyte Membrane for Fuel Cell Application[J]. J Membr Sci, 2016,501:100-108. doi: 10.1016/j.memsci.2015.12.012

    32. [32]

      Xue B, Dong X, Li Y. Synthesis of Novel Guanidinium-Based Anion-Exchange Membranes with Controlled Microblock Structures[J]. J Membr Sci, 2017,537:151-159. doi: 10.1016/j.memsci.2017.05.030

    33. [33]

      Xue B X, Wang F, Zheng J F. Highly Stable Polysulfone Anion Exchange Membranes Incorporated with Bulky Alkyl Substituted Guanidinium Cations[J]. Mol Syst Des Eng, 2019,4(5):1039-1047. doi: 10.1039/C9ME00064J

    34. [34]

      Xue B X, Wang Q, Zheng J F. Bi-guanidinium-Based Crosslinked Anion Exchange Membranes:Synthesis, Characterization, and Properties[J]. J Membr Sci, 2020,601117923. doi: 10.1016/j.memsci.2020.117923

    35. [35]

      Zhuo Y Z, Lai A L, Zhang Q G. Enhancement of Hydroxide Conductivity by Grafting Flexible Pendant Imidazolium Groups into Poly(arylene ether sulfone) as Anion Exchange Membranes[J]. J Mater Chem A, 2015,3(35):18105-18114. doi: 10.1039/C5TA04257G

    36. [36]

      Lee B, Yun D Y, Lee S. Development of Highly Alkaline Stable OH--Conductors Based on Imidazolium Cations with Various Substituents for Anion Exchange Membrane-Based Alkaline Fuel Cells[J]. J Phys Chem C, 2019,123(22):13508-13518. doi: 10.1021/acs.jpcc.9b02991

    37. [37]

      Guo D, Lai A N, Lin C X. Imidazolium-Functionalized Poly(arylene ether sulfone) Anion-Exchange Membranes Densely Grafted with Flexible Side Chains for Fuel Cells[J]. ACS Appl Mater Interfaces, 2016,8(38):25279-25288. doi: 10.1021/acsami.6b07711

    38. [38]

      Holl czki O, Terleczky P, Szieberth D. Hydrolysis of Imidazole-2-ylidenes[J]. J Am Chem Soc, 2011,133(4):780-789. doi: 10.1021/ja103578y

    39. [39]

      Lin B C, Dong H L, Li Y Y. Alkaline Stable C2-Substituted Imidazolium-Based Anion-Exchange Membranes[J]. Chem Mater, 2013,25(9):1858-1867. doi: 10.1021/cm400468u

    40. [40]

      Price S C, Williams K S, Beyer F L. Relationships Between Structure and Alkaline Stability of Imidazolium Cations for Fuel Cell Membrane Applications[J]. ACS Macro Lett, 2014,3(2):160-165. doi: 10.1021/mz4005452

    41. [41]

      Hugar K M, Kostalik H A, Coates G W. Imidazolium Cations with Exceptional Alkaline Stability:A Systematic Study of Structure-Stability Relationships[J]. J Am Chem Soc, 2015,137(27):8730-8737. doi: 10.1021/jacs.5b02879

    42. [42]

      Gu F L, Dong H L, Li Y Y. Highly Stable N3-Substituted Imidazolium-Based Alkaline Anion Exchange Membranes:Experimental Studies and Theoretical Calculations[J]. Macromolecules, 2014,47(1):208-216. doi: 10.1021/ma402334t

    43. [43]

      Zhu Y, He Y B, Ge X L. Benzyltetramethylimidazolium-Based Membrane with Exceptional Alkaline Stability in Fuel Cell:Role of Structure in Alkaline Stability[J]. J Mater Chem A, 2018,6:527-534. doi: 10.1039/C7TA09095A

    44. [44]

      Wang J, Gu S, Kaspar R B. Stabilizing the Imidazolium Cation in Hydroxide-Exchange Membranes for Fuel Cells[J]. ChemSusChem, 2013,6(11):2079-2082. doi: 10.1002/cssc.201300285

    45. [45]

      Thomas O D, Soo K J W Y, Peckham T J P. Anion Conducting Poly(dialkyl benzimidazolium) Salts[J]. Polym Chem, 2011,2(8):1641-1643. doi: 10.1039/c1py00142f

    46. [46]

      Wright A G, Weissbach T, Holdcroft S. Poly(phenylene) and M-terphenyl as Powerful Protecting Groups for the Preparation of Stable Organic Hydroxides[J]. Angew Chem Int Ed, 2016,55(15):4818-4821. doi: 10.1002/anie.201511184

    47. [47]

      Lin B C, Xu F, Su Y. Ether-free Polybenzimidazole Bearing Pendant Imidazolium Groups for Alkaline Anion Exchange Membrane Fuel Cells Application[J]. ACS Appl Energy Mater, 2020,3(1):1089-1098. doi: 10.1021/acsaem.9b02123

    48. [48]

      Ye Y S, Stokes K K, Beyer F L. Development of Phosphonium-Based Bicarbonate Anion Exchange Polymer Membranes[J]. J Membr Sci, 2013,443:93-99. doi: 10.1016/j.memsci.2013.04.053

    49. [49]

      Noonan K J T, Hugar K M, Kostalik H A. Phosphonium-Functionalized Polyethylene:A New Class of Base-Stable Alkaline Anion Exchange Membranes[J]. J Am Chem Soc, 2012,134(44):18161-18164. doi: 10.1021/ja307466s

    50. [50]

      Womble C T, Coates G W, Matyjaszewski K. Tetrakis(dialkylamino)phosphonium Polyelectrolytes Prepared by Reversible Addition-Fragmentation Chain Transfer Polymerization[J]. ACS Macro Lett, 2016,5(2):253-257. doi: 10.1021/acsmacrolett.5b00910

    51. [51]

      Cotanda P, Sudre G, Modestino M A. High Anion Conductivity and Low Water Uptake of Phosphonium Containing Diblock Copolymer Membranes[J]. Macromolecules, 2014,47(21):7540-7547. doi: 10.1021/ma501744w

    52. [52]

      Zhang B Z, Long H, Kaspar R B. Relating Alkaline Stability to the Structure of Quaternary Phosphonium Cations[J]. RSC Adv, 2018,8(47):26640-26645. doi: 10.1039/C8RA03440K

    53. [53]

      Wan W, Yang X Y, Smith R C. Convenient Route to Tetraarylphosphonium Polyelectrolytes via Metal-Catalysed P-C Coupling Polymerisation of Aryl Dihalides and Diphenylphosphine[J]. Chem Commun, 2017,53(1):252-254. doi: 10.1039/C6CC08938K

    54. [54]

      Han H S, Ma H M, Yu J H. Preparation and Performance of Novel Tetraphenylphosphonium-Functionalized Polyphosphazene Membranes for Alkaline Fuel Cells[J]. Eur Polym J, 2019,114:109-117. doi: 10.1016/j.eurpolymj.2019.02.022

    55. [55]

      Liu Y, Zhang B, Kinsinger C. Anion Exchange Membranes Composed of a Poly(2, 6-dimethyl-1, 4-phenylene oxide) Random Copolymer Functionalized with a Bulky Phosphonium Cation[J]. J Membr Sci, 2016,506:50-59. doi: 10.1016/j.memsci.2016.01.042

    56. [56]

      Barnes U M, Du Y F, Zhang W X. Phosphonium-Containing Block Copolymer Anion Exchange Membranes:Effect of Quaternization Level on Bulk and Surface Morphologies at Hydrated and Dehydrated States[J]. Macromolecules, 2019,52(16):6097-6106. doi: 10.1021/acs.macromol.9b00665

    57. [57]

      Ran J, Wu L, He Y B. Ion Exchange Membranes:New Developments and Applications[J]. J Membr Sci, 2017,522:267-291. doi: 10.1016/j.memsci.2016.09.033

    58. [58]

      Zha Y, Disabb-Miller M L, Johnson Z D. Metal-Cation-Based Anion Exchange Membranes[J]. J Am Chem Soc, 2012,134(10)44934496.  

    59. [59]

      Disabb-Miller M L, Zha Y P, DeCarlo A J. Water Uptake and Ion Mobility in Cross-Linked Bis(terpyridine)ruthenium-Based Anion Exchange Membranes[J]. Macromolecules, 2013,46(23):9279-9287. doi: 10.1021/ma401701n

    60. [60]

      Kwasny M T, Tew G N. Expanding Metal Cation Options in Polymeric Anion Exchange Membranes[J]. J Mater Chem A, 2017,5(4):1400-1405. doi: 10.1039/C6TA07990C

    61. [61]

      Zhu T, Xu S, Rahman A. Cationic Metallo-Polyelectrolytes for Robust Alkaline Anion-Exchange Membranes[J]. Angew Chem Int Ed, 2018,57:2388-2392. doi: 10.1002/anie.201712387

    62. [62]

      Zhu T Y, Sha Y, Firouzjaie H A. Rational Synthesis of Metallo-Cations Toward Redox-and Alkaline-Stable Metallo-Polyelectrolytes[J]. J Am Chem Soc, 2020,142(2):1083-1089. doi: 10.1021/jacs.9b12051

    63. [63]

      Gu S, Wang J, Kaspar R B. Permethyl Cobaltocenium (Cp*2Co+) as an Ultra-stable Cation for Polymer Hydroxide-Exchange Membranes[J]. Sci Rep, 2015,511668. doi: 10.1038/srep11668

    64. [64]

      Wu B, Ge L, Yu D. Cationic Metal-Organic Framework Porous Membranes with High Hydroxide Conductivity and Alkaline Resistance for Fuel Cells[J]. J Mater Chem A, 2016,4(38):14545-14549. doi: 10.1039/C6TA06661E

    65. [65]

      Olsson J S, Pham T H, Jannasch P. Poly(arylene piperidinium) Hydroxide Ion Exchange Membranes:Synthesis, Alkaline stability, and Conductivity[J]. Adv Funct Mater, 2017,28(2)1702758.  

    66. [66]

      Döbbelin M, Azcune I, Bedu M. Synthesis of Pyrrolidinium-Based Poly(ionic liquid) Electrolytes with Poly(ethylene glycol) Side Chains[J]. Chem Mater, 2012,24(9):1583-1590. doi: 10.1021/cm203790z

    67. [67]

      Pham T H, Olsson J S, Jannasch P. N-Spirocyclic Quaternary Ammonium Ionenes for Anion-Exchange Membranes[J]. J Am Chem Soc, 2017,139(8):2888-2891. doi: 10.1021/jacs.6b12944

    68. [68]

      Olsson J S, Pham T H, Jannasch P. Poly(N, N-diallylazacycloalkane)s for Anion-Exchange Membranes Functionalized with N-Spirocyclic Quaternary Ammonium Cations[J]. Macromolecules, 2017,50(7):2784-2793. doi: 10.1021/acs.macromol.7b00168

    69. [69]

      Pham T H, Olsson J S, Jannasch P. Poly(arylene alkylene)s with Pendant N-Spirocyclic Quaternary Ammonium Cations for Anion Exchange Membranes[J]. J Mater Chem A, 2018,6(34):16537-16547. doi: 10.1039/C8TA04699A

    70. [70]

      Chen N J, Long C, Li Y X. Ultrastable and High Ion-Conducting Polyelectrolyte Based on Six-Membered N-Spirocyclic Ammonium for Hydroxide Exchange Membrane Fuel Cell Applications[J]. ACS Appl Mater Interfaces, 2018,10(18):15720-15732. doi: 10.1021/acsami.8b02884

    71. [71]

      Chen N J, Lu C R, Li Y X. Robust Poly(aryl piperidinium)/N-Spirocyclic Poly(2, 6-dimethyl-1, 4-phenyl) for Hydroxide-Exchange Membranes[J]. J Membr Sci, 2019,572:246-254. doi: 10.1016/j.memsci.2018.10.067

    72. [72]

      Chu X M, Liu L, Huang Y D. Practical Implementation of Bis-six-membered N-Cyclic Quaternary Ammonium Cations in Advanced Anion Exchange Membranes for Fuel Cells:Synthesis and Durability[J]. J Membr Sci, 2019,578:239-250. doi: 10.1016/j.memsci.2019.02.051

    73. [73]

      Zhang Y, Chen W T, Yan X M. Ether Spaced N-Spirocyclic Quaternary Ammonium Functionalized Crosslinked Polysulfone for High Alkaline Stable Anion Exchange Membranes[J]. J Membr Sci, 2020,598117650. doi: 10.1016/j.memsci.2019.117650

    74. [74]

      Lin C X, Yu D M, Wang J X. Facile Construction of Poly(arylene ether)s-Based Anion Exchange Membranes Bearing Pendent N-Spirocyclic Quaternary Ammonium for Fuel Cells[J]. Int J Hydrogen Energy, 2019,44(48):26565-26576. doi: 10.1016/j.ijhydene.2019.08.092

    75. [75]

      Gu F L, Dong H L, Li Y Y. Base Stable Pyrrolidinium Cations for Alkaline Anion Exchange Membrane Applications[J]. Macromolecules, 2014,47(19):6740-6747. doi: 10.1021/ma5015148

    76. [76]

      Dong X, Lv D, Zheng J F. Pyrrolidinium-Functionalized Poly(arylene ether sulfone)s for Anion Exchange Membranes:Using Densely Doncentrated Ionic Groups and Block Design to Improve Membrane Performance[J]. J Membr Sci, 2017,535:301-311. doi: 10.1016/j.memsci.2017.04.054

    77. [77]

      Fujimoto C, Kim D S, Hibbs M. Backbone Stability of Quaternized Polyaromatics for Alkaline Membrane Fuel Cells[J]. J Membr Sci, 2012,423438449.  

    78. [78]

      Lee W H, Mohanty A D, Bae C. Fluorene-Based hydroxide Ion Conducting Polymers for Chemically Stable Anion Exchange Membrane Fuel Cells[J]. ACS Macro Lett, 2015,4(4)453457.  

    79. [79]

      Lee W H, Kim Y S, Bae C. Robust Hydroxide Ion Conducting Poly(biphenyl alkylene)s for Alkaline Fuel Cell Membranes[J]. ACS Macro Lett, 2015,4(8):814-818. doi: 10.1021/acsmacrolett.5b00375

    80. [80]

      Olsson J S, Pham T H, Jannasch P. Poly(arylene piperidinium) Hydroxide Ion Exchange Membranes:Synthesis, Alkaline Stability, and Conductivity[J]. Adv Funct Mater, 2017,28(2)1702758.  

    81. [81]

      Wang J H, Zhao Y, Brian P. Poly(aryl piperidinium) Membranes and Ionomers for Hydroxide Exchange Membrane Fuel Cells[J]. Nat Energy, 2019,4(5):392-398. doi: 10.1038/s41560-019-0372-8

    82. [82]

      Chu X M, Shi Y, Liu L. Piperidinium-Functionalized Anion Exchange Membranes and Their Application in Alkaline Fuel Cells and Water Electrolysis[J]. J Mater Chem A, 2019,7(13):7717-7727. doi: 10.1039/C9TA01167F

    83. [83]

      Wang F, Xue B X, Zhou S Y. Synthesis and Property of Novel Anion Exchange Membrane Based on Poly(aryl ether sulfone)s Bearing Piperidinium Moieties[J]. J Membr Sci, 2019,591117334. doi: 10.1016/j.memsci.2019.117334

  • 加载中
    1. [1]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    2. [2]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    3. [3]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    4. [4]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    5. [5]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    6. [6]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    7. [7]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    8. [8]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    9. [9]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    10. [10]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    11. [11]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    12. [12]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    13. [13]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    14. [14]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    15. [15]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    17. [17]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    18. [18]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    19. [19]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    20. [20]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

Metrics
  • PDF Downloads(3)
  • Abstract views(828)
  • HTML views(183)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return