Promotion Effect of Functionalized Carbon Nitride on Pd-Based Catalyst for Hydrogen Generation from Formic Acid
- Corresponding author: LIU Changpeng, liuchp@ciac.ac.cn XING Wei, xingwei@ciac.ac.cn
Citation:
SUN Zhicong, MENG Qinglei, MA Rongpeng, GE Junjie, LIU Changpeng, XING Wei. Promotion Effect of Functionalized Carbon Nitride on Pd-Based Catalyst for Hydrogen Generation from Formic Acid[J]. Chinese Journal of Applied Chemistry,
;2020, 37(10): 1187-1194.
doi:
10.11944/j.issn.1000-0518.2020.10.200088
Turner J A. Sustainable Hydrogen Production[J]. Science, 2004,305(5685):972-974.
Schlapbach L, Zuttel A. Hydrogen-storage Materials for Mobile Applications[J]. Nature, 2001,414:353-358. doi: 10.1038/35104634
Ouyang L Z, Yang X S, Zhu M. Enhanced Hydrogen Storage Kinetics and Stability by Synergistic Effects of in situ Formed CeH2.73 and Ni in CeH2.73-MgH2-Ni Nanocomposites[J]. J Phys Chem C, 2014,118(15):7808-7820. doi: 10.1021/jp500439n
Jiang Y, Fan X, Chen M. AuPd Nanoparticles Anchored on Nitrogen-Decorated Carbon Nanosheets with Highly Efficient and Selective Catalysis for the Dehydrogenation of Formic Acid[J]. J Phys Chem C, 2018,122(9):4792-4801. doi: 10.1021/acs.jpcc.8b00082
Fellay C, Dyson P J, Laurenczy G. A Viable Hydrogen-Storage System Based on Selective Formic Acid Decomposition with a Ruthenium Catalyst[J]. Angew Chem Int Ed, 2008,47(21):3966-3968. doi: 10.1002/anie.200800320
Li G, Jin R. Atomically Precise Gold Nanoclusters as New Model Catalysts[J]. Acc Chem Res, 2013,46(8):1749-1758. doi: 10.1021/ar300213z
Liu Q, Zhang T. A Schiff Base Modified Gold Catalyst for Green and Efficient H2 Production from Formic Acid[J]. Energy Environ Sci, 2015,8:3204-3207. doi: 10.1039/C5EE02506K
Grasemann M, Laurenczy G. Formic Acid as a Hydrogen Source Recent Developments and Future Trends[J]. Energy Environ Sci, 2012,5:8171-8181. doi: 10.1039/c2ee21928j
Li Z, Xu Q. Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid[J]. Acc Chem Res, 2017,50(6):1449-1458. doi: 10.1021/acs.accounts.7b00132
Aijaz A, Karkamkar A, Xu Q. Immobilizing Highly Catalytically Active Pt Nanoparticles inside the Pores of Metal-Organic Framework:A Double Solvents Approach[J]. J Am Chem Soc, 2012,134(34):13926-13929. doi: 10.1021/ja3043905
Wang X, Sun G, Chen P. Heteroatom-Doped Graphene Materials:Synthesis, Properties and Applications[J]. Chem Soc Rev, 2014,43:7067-7098. doi: 10.1039/C4CS00141A
Deng Y, Xie Y, Ji X. Review on Recent Advances in Nitrogen-Doped Carbons:Preparations and Applications in Super-capacitors[J]. J Mater Chem A, 2016,4:1144-1173. doi: 10.1039/C5TA08620E
Guo L, Yang J, Fan M. Role of Hydrogen Peroxide Preoxidizing on CO2 Adsorption of Nitrogen-Doped Carbons Produced from Coconut Shell[J]. ACS Sustainable Chem Eng, 2016,4(5):2806-2813. doi: 10.1021/acssuschemeng.6b00327
Liu Q, Duan Y, Zhang J. Direct Synthesis of Nitrogen-Doped Carbon Nanosheets with High Surface Area and Excellent Oxygen Reduction Performance[J]. Langmuir, 2014,30(27):8238-8245. doi: 10.1021/la404995y
Sheng Z, Shao L, Chen J. Catalyst-Free Synthesis of Nitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysts[J]. ACS Nano, 2011,5(6):4350-4358. doi: 10.1021/nn103584t
Hou S, Cai X, Wu H. Nitrogen-Doped Graphene for Dye-Sensitized Solar Cells and the Role of Nitrogen States in Triiodide Reduction[J]. Energy Environ Sci, 2013,6:3356-3362. doi: 10.1039/c3ee42516a
Choi C H, Chung M W, Park S. Enhanced Electrochemical Oxygen Reduction Reaction by Restacking of N-Doped Single Graphene Layers[J]. RSC Adv, 2013,3:4246-4253. doi: 10.1039/c3ra23180a
Lai L, Potts J R, Zhan D. Exploration of the Active Center Structure of Nitrogen-Doped Graphene-Based Catalysts for Oxygen Reduction Reaction[J]. Energy Environ Sci, 2012,5:7936-7942. doi: 10.1039/c2ee21802j
Lv Q, Meng Q, Liu W. Pd-PdO Interface as Active Site for HCOOH Selective Dehydrogenation at Ambient Condition[J]. J Phys Chem C, 2018,122(4):2081-2088. doi: 10.1021/acs.jpcc.7b08105
Jiang L, Li J, Wang K. Low Boiling Point Solvent Mediated Strategy to Synthesize Functionalized Monolayer Carbon Nitride for Superior Photocatalytic Hydrogen Evolution[J]. Appl Catal B:Environ, ,260118181. doi: 10.1016/j.apcatb.2019.118181
Wang X, Meng Q, Liu C. Recent Progress in Hydrogen Production from Formic Acid Decomposition[J]. Int J Hydrogen Energy, 2018,43:7055-7071. doi: 10.1016/j.ijhydene.2018.02.146
Wang Q, Tsumori N, Xu Q. Fast Dehydrogenation of Formic Acid over Palladium Nanoparticles Immobilized in Nitrogen-Doped Hierarchically Porous Carbon[J]. ACS Catal, 2018,8(12):12041-12045. doi: 10.1021/acscatal.8b03444
Bi Q, Lin J, Liu Y. Dehydrogenation of Formic Acid at Room Temperature:Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon[J]. Angew Chem Int Ed, 2016,55(39):11849-11853.
Zhou X, Huang Y, Xing W. High-Quality Hydrogen from the Catalyzed Decomposition of Formic Acid by Pd-Au/C and Pd-Ag/C[J]. Chem Commun, 2008,30:3540-3542.
Li Z, Yang X, Tsumori N. Tandem Nitrogen Functionalization of Porous Carbon:Toward Immobilizing Highly Active Palladium Nanoclusters for Dehydrogenation of Formic Acid[J]. ACS Catal, 2017,7(4):2720-2724. doi: 10.1021/acscatal.7b00053
Zhu Q, Tsumori N, Xu Q. Sodium Hydroxide-Assisted Growth of Uniform Pd Nanoparticles on Nanoporous Carbon MSC-30 for Efficient and Complete Dehydrogenation of Formic Acid under Ambient Conditions[J]. Chem Sci, 2014,5:195-199. doi: 10.1039/C3SC52448E
Jiang K, Xu K, Zou S. B-Doped Pd Catalyst:Boosting Room-Temperature Hydrogen Production from Formic Acid-Formate Solutions[J]. J Am Chem Soc, 2014,136(13):4861-4864. doi: 10.1021/ja5008917
Cai Y, Li X, Zhang Y. Highly Efficient Dehydrogenation of Formic Acid over a Palladium-Nanoparticle-Based Mott-Schottky Photocatalyst[J]. Angew Chem Int Ed, 2013,52(45):11822-118225. doi: 10.1002/anie.201304652
Wang X, Meng Q, Liu C. Metal Organic Framework Derived Nitrogen-doped Carbon Anchored Palladium Nanoparticles for Ambient Temperature Formic Acid Decomposition[J]. Int J Hydrogen Energy, 2019,44:28402-28408. doi: 10.1016/j.ijhydene.2019.05.083
Zhang X, Shang N, Shang H. Nitrogen-Decorated Porous Carbon Supported AgPd Nanoparticles for Boosting Hydrogen Generation from Formic Acid[J]. Energy Technol, 2019,7(1):140-145. doi: 10.1002/ente.201800522
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Rui HUANG , Shengjie LIU , Qingyuan WU , Nanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
Lina Liu , Xiaolan Wei , Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
Hao GUO , Tong WEI , Qingqing SHEN , Anqi HONG , Zeting DENG , Zheng FANG , Jichao SHI , Renhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169