Citation: ZHANG Xinyu, QU Jiangying, TANG Zhanlei, LI Jielan, WANG Tao, GAO Feng. In Situ Synthesis of Nitrogen-Doped Carbon Coated CoxP Composites and Their Lithium Properties[J]. Chinese Journal of Applied Chemistry, ;2020, 37(10): 1172-1180. doi: 10.11944/j.issn.1000-0518.2020.10.200072 shu

In Situ Synthesis of Nitrogen-Doped Carbon Coated CoxP Composites and Their Lithium Properties

  • Corresponding author: GAO Feng, fenggao2003@163.com
  • Received Date: 16 March 2020
    Revised Date: 21 April 2020
    Accepted Date: 18 May 2020

    Fund Project: the NSFC 51972059the NSFC U1610114the CSC Fund 201908440038Supported by the NSFC(No.U1610114, No.51972059), and the CSC Fund(No.201908440038)

Figures(5)

  • Nitrogen-doped carbon coated Co2P@N-C and CoP@N-C composites were in situ synthesized at 800 ℃ using zeolitic imidazolate framework-67 (ZIF-67) as cobalt/nitrogen/carbon precursor and red phosphorus as phosphorus source, and their electrochemical properties were studied as anode materials of lithium ion batteries. It is found that the resulted products can be tailored by the ratio of ZIF-67 to red phosphorus. The obtained Co2P@N-C and CoP@N-C composites show regular dodecahedron and the size of about 250 to 400 nm and exhibit good conductivity. When they are used as anode materials, the first discharge capacity of the Co2P@N-C and CoP@N-C composites are 942 and 1170.6 mA·h/g at the current density of 0.05 A/g, respectively. Even at the current density of 1 A/g, their capacities are maintained at 306.6 and 180.3 mA·h/g after 500 cycles, respectively. We have provided a green and easy method for the synthesis of CoxP@C composites for lithium ion battery.
  • 加载中
    1. [1]

      Han C P, Xu L, Li H F. Biopolymer-Assisted Synthesis of 3D Interconnected Fe3O4@Carbon Core@Shell as Anode for Asymmetric Lithium Ion Capacitors[J]. Carbon, 2018,140:296-305. doi: 10.1016/j.carbon.2018.09.010

    2. [2]

      Jin J, Zheng Y, Huang S Z. Directly Anchoring 2D NiCo Metal-Organic Frameworks on Few-Layer Black Phosphorus for Advanced Lithium-Ion Batteries[J]. J Mater Chem A, 2019,7(2):783-790. doi: 10.1039/C8TA09327J

    3. [3]

      Na R, Liu Y B, Wu Z P. Nano-Silicon Composite Materials with N-Doped Graphene of Controllable and Optimal Pyridinic-to-Pyrrolic Structural Ratios for Lithium Ion Battery[J]. Electrochim Acta, 2019,321(20)134742.  

    4. [4]

      Wang S T, He M, Walter M. Monodisperse CoSn2 and FeSn2 Nanocrystals as High-Performance Anode Materials for Lithium-Ion Batteries[J]. Nanoscale, 2018,10(15):6827-6831. doi: 10.1039/C7NR08261D

    5. [5]

      Wang J Y, Wu C, Deng Q L. Highly Durable and Cycle-Stable Lithium Storage Based on MnO Nanoparticle-Decorated 3D Interconnected CNT/Graphene Architecture[J]. Nanoscale, 2018,10(27):13140-13148. doi: 10.1039/C8NR01835A

    6. [6]

      Zhang H W, Huang X D, Noonan O. Tailored Yolk-Shell Sn@C Nanoboxes for High-Performance Lithium Storage[J]. Adv Funct Mater, 2017,27(8):1606023.1-1606023.6.  

    7. [7]

      Guan C, Wang X H, Zhang Q. Highly Stable and Reversible Lithium Storage in SnO2 Nanowires Surface Coated with a Uniform Hollow Shell by Atomic Layer Deposition[J]. Nano Lett, 2014,14(8):4852-4858. doi: 10.1021/nl502192p

    8. [8]

      He J R, Chen Y F, Manthiram A. MOF-Derived Cobalt Sulfide Grown on 3D Graphene Foam as an Efficient Sulfur Host for Long-Life Lithium-Sulfur Batteries[J]. Science, 2018,4:36-43.  

    9. [9]

      Gu Y, Xu Y, Wang Y. Graphene-Wrapped CoS Nanoparticles for High-Capacity Lithium-Ion Storage[J]. ACS Appl Mater Interfaces, 2013,5(3):801-806. doi: 10.1021/am3023652

    10. [10]

      Chu Y T, Guo L Y, Xi B J. Embedding MnO@Mn3O4 Nanoparticles in an N-Doped-Carbon Framework Derived from Mn-Organic Clusters for Efficient Lithium Storage[J]. Adv Mater, 2018,30(6)1704244. doi: 10.1002/adma.201704244

    11. [11]

      Zhu G Y, Wang L, Lin H N. Walnut-Like Multicore-Shell MnO Encapsulated Nitrogen-Rich Carbon Nanocapsules as Anode Material for Long-Cycling and Soft-Packed Lithium-Ion Batteries[J]. Adv Funct Mater, 2018,28(18)1800003. doi: 10.1002/adfm.201800003

    12. [12]

      Kim K H, Kim W S, Hong S H. Solid Solution Phosphide (Mn1-xFexP) as a Tunable Conversion/Alloying Hybrid Anode for Lithium-Ion Batteries[J]. Nanoscale, 2019,11(28):13494-13501. doi: 10.1039/C9NR02016K

    13. [13]

      Toki M, Yuh Y, Tomohiro T. Characterization of Sn4P3-Carbon Composite Films for Lithium-Ion Battery Anode Fabricated by Aerosol Deposition[J]. Nanomaterials, 2019,9(7)1032. doi: 10.3390/nano9071032

    14. [14]

      Gao H, Yang F, Zheng Y. Three-Dimensional Porous Cobalt Phosphide Nanocubes Encapsulated in a Graphene Aerogel as an Advanced Anode with High Coulombic Efficiency for High-Energy Lithium-Ion Batteries[J]. ACS Appl Mater Interfaces, 2019,11(5):5373-5379. doi: 10.1021/acsami.8b19613

    15. [15]

      Wang P, Li C X, Dong S H. One-Step Route Synthesized Co2P/Ru/N-Doped Carbon Nanotube Hybrids as Bifunctional Electrocatalysts for High-Performance Li-O2 Batteries[J]. Small, 2019,15(30)1900001. doi: 10.1002/smll.201900001

    16. [16]

      Lu A, Zhang X Q, Chen Y Z. Synthesis of Co2P/Graphene Nanocomposites and Their Enhanced Properties as Anode Materials for Lithium Ion Batteries[J]. J Power Sources, 2015,295:329-335. doi: 10.1016/j.jpowsour.2015.06.154

    17. [17]

      Zhang C, Jiao G H, Kong F J. Hierarchical Co2P Microspheres Assembled from Nanorods Grown on Reduced Graphene Oxide as Anode Material for Lithium-Ion Batteries[J]. Appl Surf Sci, 2018,459:665-671. doi: 10.1016/j.apsusc.2018.08.043

    18. [18]

      Zhu P P, Zhang Z, Zhao P F. Rational Design of Intertwined Carbon Nanotubes Threaded Porous CoP@Carbon Nanocubes as Anode with Superior Lithium Storage[J]. Carbon, 2019,142:269-277. doi: 10.1016/j.carbon.2018.10.066

    19. [19]

      Lei C J, Wang F F, Yang J. Embedding Co2P Nanoparticles in N-Doped Carbon Nanotubes Grown on Porous Carbon Polyhedra for High-Performance Lithium-Ion Batteries[J]. Ind Eng Chem Res, 2018,57(39):13019-13025. doi: 10.1021/acs.iecr.8b02036

    20. [20]

      Yang Z K, Lin L, Xu A W. 2D Nanoporous Fe-N/C Nanosheets as Highly Efficient Non-Platinum Electrocatalysts for Oxygen Reduction Reaction in Zn-Air Battery[J]. Small, 2016,12(41):5710-5719. doi: 10.1002/smll.201601887

    21. [21]

      Liu X H, Zhang J, Guo S J. Graphene/N-Doped Carbon Sandwiched Nanosheets with Ultrahigh Nitrogen Doping for Boosting Lithium-Ion Batteries[J]. J Mater Chem A, 2016,4(4):1423-1431. doi: 10.1039/C5TA09066K

    22. [22]

      Yang S L, Peng L, Oveisi E. MOF-Derived Cobalt Phosphide/Carbon Nanocubes for Selective Hydrogenation of Nitroarenes to Anilines[J]. Chemistry, 2018,24(17):4234-4238. doi: 10.1002/chem.201705400

    23. [23]

      Xie Q S, Zeng D Q, Gong P Y. One-pot Fabrication of Graphene Sheets Decorated Co2P-Co Hollow Nanospheres for Advanced Lithium Ion Battery Anodes[J]. Electrochim Acta, 2017,232:465-473. doi: 10.1016/j.electacta.2017.03.003

    24. [24]

      Jiang Z, Li Z P, Qin Z H. LDH Nanocages Synthesized with MOF Templates and Their High Performance as Supercapacitors[J]. Nanoscale, 2013,5(23):11770-11775. doi: 10.1039/c3nr03829g

    25. [25]

      Salunkhe R R, Tang J, Kamachi Y. Asymmetric Supercapacitors Using 3D Nanoporous Carbon and Cobalt Oxide Electrodes Synthesized from a Single Metal-Organic Framework[J]. ACS Nano, 2015,9(6):6288-6296. doi: 10.1021/acsnano.5b01790

    26. [26]

      Bao Y P, TayY S, Lim T T. Polyacrylonitrile(PAN)-Induced Carbon Membrane with In-situ Encapsulated Cobalt Crystal for Hybrid Peroxymonosulfate Oxidation-Filtration Process:Preparation, Characterization and Performance Evaluation[J]. Chem Eng J, 2019,373:425-436. doi: 10.1016/j.cej.2019.05.058

    27. [27]

      Ge X L, Li Z Q, Yin L W. Metal-Organic Frameworks Derived Porous Core/Shell CoP@C Polyhedrons Anchored on 3D Reduced Graphene Oxide Networks as Anode for Sodium-Ion Battery[J]. Nano Energy, 2017,32:117-124. doi: 10.1016/j.nanoen.2016.11.055

    28. [28]

      Guo Q, Ru Q, Wang B. Design and Synthesis of Mesoporous Honeycomb-Like CoP/Co2P Hybrids as Anode with a High Cyclic Stability in Lithium-Ion Batteries[J]. Energy Technology, 2017,5(12):2294-2299. doi: 10.1002/ente.201700337

    29. [29]

      Li J, Li X F, Liu P. Self-Supporting Hybrid Fiber Mats of Cu3P-Co2P/N-C Endowed with Enhanced Lithium/Sodium Ions Storage Performances[J]. ACS Appl Mater Interfaces, 2019,11(12):11442-11450. doi: 10.1021/acsami.8b22367

    30. [30]

      Jin R, Li X F, Sun Y X. Metal-Organic Frameworks-Derived Co2P@N-C@rGO with Dual Protection Layers for Improved Sodium Storage[J]. ACS Appl Mater Interfaces, 2018,10(17):14641-14648. doi: 10.1021/acsami.8b00444

    31. [31]

      Zhuang M H, Ou X W, Dou Y B. Polymer-Embedded Fabrication of Co2P Nanoparticles Encapsulated in N, P-Doped Graphene for Hydrogen Generation[J]. Nano Lett, 2016,16(7):4691-4698. doi: 10.1021/acs.nanolett.6b02203

    32. [32]

      Wang W W, Li J W, Bi M F. Dual Function Flower-Like CoP/C Nanosheets:High Stability Lithium-Ion Anode and Excellent Hydrogen Evolution Reaction Catalyst[J]. Electrochim Acta, 2018,259:822-829. doi: 10.1016/j.electacta.2017.11.040

    33. [33]

      Chen L Y, Zhang Y Y, Wang H F. Cobalt Layered Double Hydroxides Derived CoP/Co2P Hybrids for Electrocatalytic Overall Water Splitting[J]. Nanoscale, 2018,10(45):21019-21024. doi: 10.1039/C8NR07535B

    34. [34]

      Kwon H T, Kim J H, Jeon K J. CoxP Compounds:Electrochemical Conversion/Partial Recombination Reaction and Partially Disproportionated Nanocomposite for Li-Ion Battery Anodes[J]. RSC Adv, 2014,4(81):43227-43234. doi: 10.1039/C4RA07885C

    35. [35]

      Yang D, Zhu J X, Rui X H. Synthesis of Cobalt Phosphides and Their Application as Anodes for Lithium Ion Batteries[J]. ACS Appl Mater Interfaces, 2013,5(3):1093-1099. doi: 10.1021/am302877q

    36. [36]

      Bai J, Xi B J, Mao H Z. One-Step Construction of N, P-Codoped Porous Carbon Sheets/CoP Hybrids with Enhanced Lithium and Potassium Storage[J]. Adv Mater, 2018,30(35)1802310. doi: 10.1002/adma.201802310

  • 加载中
    1. [1]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    2. [2]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    3. [3]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    7. [7]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    8. [8]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    9. [9]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    10. [10]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    11. [11]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    12. [12]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    13. [13]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    14. [14]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    15. [15]

      Jun JiangTong GuoWuxin BaiMingliang LiuShujun LiuZhijie QiJingwen SunShugang PanAleksandr L. VasilievZhiyuan MaXin WangJunwu ZhuYongsheng Fu . Modularized sulfur storage achieved by 100% space utilization host for high performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(4): 108565-. doi: 10.1016/j.cclet.2023.108565

    16. [16]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    17. [17]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    18. [18]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    19. [19]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    20. [20]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

Metrics
  • PDF Downloads(13)
  • Abstract views(1960)
  • HTML views(710)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return