Citation: YU Changmu, ZHANG Rong, LU Xiaoluan, YANG Min, PENG Qianrong. Preparation of Imm-Fe3+-IL with Peroxidase Activity and Its Colorimetric Determination of H2O2 and Glucose[J]. Chinese Journal of Applied Chemistry, ;2020, 37(10): 1211-1220. doi: 10.11944/j.issn.1000-0518.2020.10.200064 shu

Preparation of Imm-Fe3+-IL with Peroxidase Activity and Its Colorimetric Determination of H2O2 and Glucose

  • Corresponding author: YANG Min, 2578973180@qq.com PENG Qianrong, 3435391@qq.com
  • Received Date: 12 March 2020
    Revised Date: 19 May 2020
    Accepted Date: 11 June 2020

    Fund Project: Supported by the National Natural Science Foundation of China(No.21562014), Guizhou Zhongyan Technology Project(Qianyan Gongji [2015] No.8)Guizhou Zhongyan Technology Project Qianyan Gongji [2015] No.8the National Natural Science Foundation of China 21562014

Figures(8)

  • The Imm-Fe3+-IL nanomaterials prepared by the sol-gel method have peroxidase-like activity, which can catalyze the rapid oxidation of 3, 3', 5, 5'-tetramethylbenzidine (TMB) with hydrogen peroxide (H2O2) to produce corresponding color changes. The steady-state kinetic analysis shows that the catalytic kinetics of Imm-Fe3+-IL follows the typical Michaelis-Menten model, and the Ping-Pong mechanism. Compared with horseradish peroxidase (HRP), Imm-Fe3+-IL nanomaterials have stronger affinity. Combined with glucose oxidase, a colorimetric detection method for H2O2 and glucose is established. The results show that the concentration of H2O2 and glucose shows a good linear relationship with the absorbance of the reaction system. The linear range of H2O2 is 1~200 μmol/L, the linear range of glucose is 10~200 μmol/L, and the limits of detection (LOD) are 0.35 and 3.31 μmol/L for H2O2 and glucose, respectively.
  • 加载中
    1. [1]

      López-Lázaro M. Dual Role of Hydrogen Peroxide in Cancer:Possible Relevance to Cancer Chemoprevention and Therapy[J]. Cancer Lett, 2007,252(1):1-8. doi: 10.1016/j.canlet.2006.10.029

    2. [2]

      Zhao L, Zhang F, Ding X. Gut Bacteria Selectively Promoted by Dietary Fibers Alleviate Type 2 Diabetes[J]. Science, 2018,359(6380):1151-1156. doi: 10.1126/science.aao5774

    3. [3]

      Huang D, Wang X, Zhang C. Sorptive Removal of Ionizable Antibiotic Sulfamethazine from Aqueous Solution by Graphene Oxide-Coated Biochar Nanocomposites:Influencing Factors and Mechanism[J]. Chemosphere, 2017,186:414-421. doi: 10.1016/j.chemosphere.2017.07.154

    4. [4]

      Bommer C, Sagalova V, Heesemann E. Global Economic Burden of Diabetes in Adults:Projections From 2015 to 2030[J]. Diabetes Care, 2018,41(5):963-970. doi: 10.2337/dc17-1962

    5. [5]

      Jiang L C, Zhang W D. Electrodeposition of TiO2 Nanoparticles on Multiwalled Carbon Nanotube Arrays for Hydrogen Peroxide Sensing[J]. Electroanalysis, 2009,21(8):988-993. doi: 10.1002/elan.200804502

    6. [6]

      Yan X Y. Nanozyme:A New Type of Artificial Enzyme[J]. Prog Biochem Biophys, 2018,45(2):101-104.  

    7. [7]

      Wu J, Wang X, Wang Q. Nanomaterials with Enzyme-Like Characteristics(Nanozymes):Next-Generation Artificial Enzymes(Ⅱ)[J]. Chem Soc Rev, 2019,48(4):1004-1076. doi: 10.1039/C8CS00457A

    8. [8]

      Ge J, Ren X, Qiu X. Fast Synthesis of Fluorescent SiO2@CdTe Nanoparticles with Reusability in Detection of H2O2[J]. J Mater Chem B, 2015,3(30):6385-6390. doi: 10.1039/C5TB00740B

    9. [9]

      Chen H, Lin L, Lin Z. Flow-injection Analysis of Hydrogen Peroxide Based on Carbon Nanospheres Catalyzed Hydrogen Carbonate-Hydrogen Peroxide Chemiluminescent Reaction[J]. Analyst, 2011,136(9):1957-1964. doi: 10.1039/c0an00815j

    10. [10]

      Dong S, Xi J B, Wu Y N. High Loading MnO2 Nanowires on Graphene Paper:Facile Electrochemical Synthesis and Use as Flexible Electrode for Tracking Hydrogen Peroxide Secretion in Live Cells[J]. Anal Chim Acta, 2015,853:200-206. doi: 10.1016/j.aca.2014.08.004

    11. [11]

      Ding Y, Chen M, Wu K. High-performance Peroxidase Mimics for Rapid Colorimetric Detection of H2O2 and Glucose Derived from Perylene Diimides Functionalized Co3O4 Nanoparticles[J]. Mater Sci Eng:C, 2017,80:558-565. doi: 10.1016/j.msec.2017.06.020

    12. [12]

      Wei H, Wang E K. Fe3O4 Magnetic Nanoparticles as Peroxidase Mimetics and Their Applications in H2O2 and Glucose Detection[J]. Anal Chem, 2008,80(6):2250-2254. doi: 10.1021/ac702203f

    13. [13]

      Guo J, Wang Y, Zhao M. 3D Flower-like Ferrous(Ⅱ) Phosphate Nanostructures as Peroxidase Mimetics for Sensitive Colorimetric Detection of Hydrogen Peroxide and Glucose at Nanomolar Level[J]. Talanta, 2018,182:230-240. doi: 10.1016/j.talanta.2018.01.080

    14. [14]

      Aghayan M, Mahmoudi A, Sazegar M R. Enzymatic Activity of Fe-Grafted Mesoporous Silica Nanoparticles:An Insight into H2O2 and Glucose Detection[J]. New J Chem, 2018,42(19):16060-16068. doi: 10.1039/C8NJ03534B

    15. [15]

      Liu H, Zhu L, Ma H. Copper(Ⅱ)-coated Fe3O4 Nanoparticles as an Efficient Enzyme Mimic for Colorimetric Detection of Hydrogen Peroxide[J]. Mikrochim Acta, 2019,186(8)518. doi: 10.1007/s00604-019-3599-y

    16. [16]

      Aghayan M, Mahmoudi A, Nazari K. Fe(Ⅲ) Porphyrin Metal-organic Framework as an Artificial Enzyme Mimics and Its Application in Biosensing of Glucose and H2O2[J]. J Porous Mat, 2019,26(5):1507-1521. doi: 10.1007/s10934-019-00748-4

    17. [17]

      Zhang L, Hai X, Xia C. Growth of CuO Nanoneedles on Graphene Quantum Dots as Peroxidase Mimics for Sensitive Colorimetric Detection of Hydrogen Peroxide and Glucose[J]. Sens Actuators B:Chem, 2017,248:374-384. doi: 10.1016/j.snb.2017.04.011

    18. [18]

      Zhan T R, Kang J X, Li X J. NiFe Layered Double Hydroxide Nanosheets as an Efficiently Mimic Enzyme for Colorimetric Determination of Glucose and H2O2[J]. Sens Actuators B:Chem, 2018,255:2635-2642. doi: 10.1016/j.snb.2017.09.074

    19. [19]

      Vallabani N V S, Karakoti A S, Singh S. ATP-mediated Intrinsic Peroxidase-like Activity of Fe3O4-based Nanozyme:One Step Detection of Blood Glucose at Physiological pH[J]. Colloid Surf B, 2017,153:52-60. doi: 10.1016/j.colsurfb.2017.02.004

    20. [20]

      Chen M, Sun L, Ding Y. N, N'-Di-carboxymethyl Perylene Diimide Functionalized Magnetic Nanocomposites with Enhanced Peroxidase-like Activity for Colorimetric Sensing of H2O2 and Glucose[J]. New J Chem, 2017,41(13):5853-5862. doi: 10.1039/C7NJ00292K

    21. [21]

      ZHOU Dangui, HUA Yixin. Research Progress on the Solubility of Ionic Liquids to Gases[J]. Energy ChemInd, 2009,30(5):34-39.  

    22. [22]

      WANG Yinhang, LI Wei, LUO Sha. Application and Research Progress of Ionic Liquid-Supported Functional Materials[J]. Acta Chim Sin, 2018,76(2):85-94.  

    23. [23]

      Jung J Y, Taher A, Kim H J. Heck Reaction Catalyzed by Mesoporous SBA-15-Supported Ionic Liquid-Pd(OAc)2[J]. Synlett, 2009,2009(1):39-42.  

    24. [24]

      Han P, Zhang H, Qiu X. Palladium Within Ionic Liquid Functionalized Mesoporous Silica SBA-15 and Its Catalytic Application in Room-Temperature Suzuki Coupling Reaction[J]. J Mol Catal A:Chem, 2008,295(1):57-67.  

    25. [25]

      Sasaki T, Zhong C, Tada M. Immobilized Metal Ion-Containing Ionic Liquids:Preparation, Structure and Catalytic Performance in Kharasch Addition Reaction[J]. Chem Commun, 2005,36(40):2506-2508.  

    26. [26]

      Lou L L, Yu K, Ding F. An Effective Approach for the Immobilization of Chiral Mn(Ⅲ) Salen Complexes Through a Supported Ionic Liquid Phase[J]. Tetrahedron Lett, 2006,47(37):6513-6516. doi: 10.1016/j.tetlet.2006.07.048

    27. [27]

      PENG Qianrong, YANG Min, XIE Rugang, et al. One-Step Synthesis of Keto-α-ionone, Keto-β-ionone and Its Ether and Ester Derivatives: Chinese Pat, CN1817842A[P]. 2005-2012(in Chinese).

    28. [28]

      Matuszek K, Chrobok A, Latos P. Silica-supported Chlorometallate(Ⅲ) Ionic Liquids as Recyclable Catalysts for Diels-Alder Reaction under Solventless Conditions[J]. Catal Sci Tech, 2016,6(22):8129-8137. doi: 10.1039/C6CY01771A

    29. [29]

      Han L, Park M S, Choi S J. Incorporation of Metal Ions into Silica-Grafted Imidazolium-Based Ionic Liquids to Efficiently Catalyze Cycloaddition Reactions of CO2 and Epoxides[J]. Catal Lett, 2011,142(2):259-266.  

    30. [30]

      Matuszek K, Chrobok A, Latos P. Silica-supported Chlorometallate(Ⅲ) Ionic Liquids as Recyclable Catalysts for Diels-Alder Reaction under Solventless Conditions[J]. Catal Sci Technol, 2016,6(22):8129-8137. doi: 10.1039/C6CY01771A

    31. [31]

      Liu G, Hou M, Song J. Ni2+-Containing Ionic Liquid Immobilized on Silica:Effective Catalyst for Styrene Oxidation with H2O2 at Solvent-Free Condition[J]. J Mol Catal A:Chem, 2010,316(1/2):90-94.

    32. [32]

      Zhu L, Zhang C, Liu Y. Direct Synthesis of Ordered N-Methylimidazolium Functionalized Mesoporous Silica as Highly Efficient Anion Exchanger of Cr(Ⅵ)[J]. J Mater Chem, 2010,20(8):1553-1559. doi: 10.1039/B912345H

    33. [33]

      Josephy P D, Eling T, Mason R P. The Horseradish Peroxidase-catalyzed Oxidation of 3, 5, 3', 5'-Tetramethylbenzidine. Free Radical and Charge-Transfer Complex Intermediates[J]. J Biol Chem, 1982,257(7):3669-3675.  

    34. [34]

      Jiang B, Duan D M, Gao L Z. Standardized Assays for Determining the Catalytic Activity and Kinetics of Peroxidase-Like Nanozymes[J]. Nat Protoc, 2018,13(7):1506-1520. doi: 10.1038/s41596-018-0001-1

    35. [35]

      Lin Y J, Chang Y H, Chen G J. Effects of Ag-Doped NiTiO3 on Photoreduction of Methylene Blue under UV and Visible Light Irradiation[J]. J Alloys Compd, 2009,479(1/2):785-790.  

    36. [36]

      Porter D J T, Bright H J. The Mechanism of Oxidation of Nitroalkanes by Horseradish Peroxidase[J]. J Biol Chem, 1983,258(16):9913-9924.  

    37. [37]

      Yu C J, Lin C Y, Liu C H. Synthesis of Poly(diallyldimethylammonium chloride)-Coated Fe3O4 Nanoparticles for Colorimetric Sensing of Glucose and Selective Extraction of Thiol[J]. Biosens Bioelectron, 2010,26(2):913-917. doi: 10.1016/j.bios.2010.06.069

    38. [38]

      Lin L P, Song X H, Chen Y Y. Intrinsic Peroxidase-Like Catalytic Activity of Nitrogen-Doped Graphene Quantum Dots and Their Application in the Colorimetric Detection of H2O2 and Glucose[J]. Anal Chimica Acta, 2015,869:89-95. doi: 10.1016/j.aca.2015.02.024

    39. [39]

      Hu L Z, Yuan Y L, Zhang L. Copper Nanoclusters as Peroxidase Mimetics and Their Applications to H2O2 and Glucose Detection[J]. Anal Chim Acta, 2013,762:83-86. doi: 10.1016/j.aca.2012.11.056

    40. [40]

      Mu J S, He Y, Wang Y. Copper-incorporated SBA-15 with Peroxidase-Like Activity and Its Application for Colorimetric Detection of Glucose in Human Serum[J]. Talanta, 2016,148:22-28. doi: 10.1016/j.talanta.2015.10.060

  • 加载中
    1. [1]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    2. [2]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    3. [3]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    4. [4]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    5. [5]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    6. [6]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    7. [7]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    8. [8]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    9. [9]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    10. [10]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    11. [11]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    12. [12]

      Hao LvZhi LiPeng YinPing WanMingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457

    13. [13]

      Sikai Wu Xuefei Wang Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457

    14. [14]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    15. [15]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    16. [16]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    17. [17]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    18. [18]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    19. [19]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    20. [20]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

Metrics
  • PDF Downloads(3)
  • Abstract views(611)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return