Research Progress of Intercalation Methods of Two-Dimensional Materials
- Corresponding author: GONG Yongji, yongjigong@buaa.edu.cn
Citation:
WANG Lei, GONG Yongji. Research Progress of Intercalation Methods of Two-Dimensional Materials[J]. Chinese Journal of Applied Chemistry,
;2020, 37(8): 855-864.
doi:
10.11944/j.issn.1000-0518.2020.08.200086
Novoselov K S, Geim A K, Morozov S V. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004,306(5696):666-669. doi: 10.1126/science.1102896
Zhan D, Sun L, Ni Z H. FeCl3-Based Few-Layer Graphene Intercalation Compounds:Single Linear Dispersion Electronic Band Structure and Strong Charge Transfer Doping[J]. Adv Funct Mater, 2010,20(20):3504-3509. doi: 10.1002/adfm.201000641
Jung N, Kim B, Crowther A C. Optical Reflectivity and Raman Scattering in Few-Layer-Thick Graphene Highly Doped by K and Rb[J]. ACS Nano, 2011,5(7):5708-5716. doi: 10.1021/nn201368g
Bao W, Wan J, Han X. Approaching the Limits of Transparency and Conductivity in Graphitic Materials Through Lithium Intercalation[J]. Nat Commun, 2014,5(1):1-9.
Koski K J, Wessells C D, Reed B W. Chemical Intercalation of Zerovalent Metals into 2D Layered Bi2Se3 Nanoribbons[J]. J Am Chem Soc, 2012,134(33):13773-13779. doi: 10.1021/ja304925t
Jung N, Kim N, Jockusch S. Charge Transfer Chemical Doping of Few Layer Graphenes:Charge Distribution and Band Gap Formation[J]. Nano Lett, 2009,9(12):4133-4137. doi: 10.1021/nl902362q
Mashtalir O, Naguib M, Mochalin V N. Intercalation and Delamination of Layered Carbides and Carbonitrides[J]. Nat Commun, 2013,4(1):1-7.
Stark M S, Kuntz K L, Martens S J. Intercalation of Layered Materials from Bulk to 2D[J]. Adv Mater, 2019,31(27)1808213. doi: 10.1002/adma.201808213
Whittingha S M. Intercalation Chemistry[M]. Elsevier, 2012.
Zhao W, Tan P, Zhang J. Charge Transfer and Optical Phonon Mixing in Few-Layer Graphene Chemically Doped with Sulfuric Acid[J]. Phys Rev B, 2010,82(24)245423. doi: 10.1103/PhysRevB.82.245423
Falardeau E, Hanlon L, Thompson T. Direct Synthesis of Stage 1-3 Intercalation Compounds of Arsenic Pentafluoridein Graphite[J]. Inorg Chem, 1978,17(2):301-303.
Müller-Warmuth W, Schöllhorn R. Progress in Intercalation Research[M]. Springer Science & Business Media, 2012.
Eklund P, Kambe N, Dresselhaus G. In-Plane Intercalate Lattice Modes in Graphite-Bromine Using Raman Spectroscopy[J]. Phys Rev B, 1978,18(12)7069. doi: 10.1103/PhysRevB.18.7069
Mansour A E, Dey S, Amassian A. Bromination of Graphene:A New Route to Making High Performance Transparent Conducting Electrodes with Low Optical Losses[J]. ACS Appl Mater Interfaces, 2015,7(32):17692-17699. doi: 10.1021/acsami.5b03274
Jung N, Crowther A C, Kim N. Raman Enhancement on Graphene:Adsorbed and Intercalated Molecular Species[J]. ACS Nano, 2010,4(11):7005-7013. doi: 10.1021/nn102227u
Eklund P, Dresselhaus G, Dresselhaus M. Raman Scattering from In-Plane Lattice Modes in Low-Stage Graphite-Alkali-Metal Compounds[J]. Phys Rev B, 1977,16(8)3330. doi: 10.1103/PhysRevB.16.3330
Nemanich R, Solin S, Guerard D. Raman Scattering from Intercalated Donor Compounds of Graphite[J]. Phys Rev B, 1977,16(6)2965. doi: 10.1103/PhysRevB.16.2965
Eklund P, Subbaswamy K. Analysis of Breit-Wigner Line Shapes in the Raman Spectra of Graphite Intercalation Compounds[J]. Phys Rev B, 1979,20(12)5157. doi: 10.1103/PhysRevB.20.5157
Boeri L, Bachelet G B, Giantomassi M. Electron-Phonon Interaction in Graphite Intercalation Compounds[J]. Phys Rev B, 2007,76(6)064510. doi: 10.1103/PhysRevB.76.064510
Caswell N, Solin S. Vibrational Excitations of Pure FeCl3 and Graphite Intercalated with Ferric Chloride[J]. Solid State Commun, 1978,27(10):961-967. doi: 10.1016/0038-1098(78)91015-3
Underhill C, Leung S, Dresselhaus G. Infrared and Raman Spectroscopy of Graphite-Ferric Chloride[J]. Solid State Commun, 1979,29(11):769-774. doi: 10.1016/0038-1098(79)90158-3
Kim N, Kim K S, Jung N. Synthesis and Electrical Characterization of Magnetic Bilayer Graphene Intercalate[J]. Nano Lett, 2011,11(2):860-865. doi: 10.1021/nl104228f
Zhao W, Tan P H, Liu J. Intercalation of Few-Layer Graphite Flakes with FeCl3:Raman Determination of Fermi Level, Layer by Layer Decoupling, and Stability[J]. J Am Chem Soc, 2011,133(15):5941-5946. doi: 10.1021/ja110939a
Hooley J, Bartlett M, Liengme B. A Mossbauer Study of Graphite Iron Chloride Compounds[J]. Carbon, 1968,6(5):681-685. doi: 10.1016/0008-6223(68)90012-2
Kanetani K, Sugawara K, Sato T. Ca Intercalated Bilayer Graphene as a Thinnest Limit of Superconducting C6Ca[J]. Proc Natl Acad Sci USA, 2012,109(48):19610-19613. doi: 10.1073/pnas.1208889109
Sugawara K, Kanetani K, Sato T. Fabrication of Li-Intercalated Bilayer Graphene[J]. AIP Adv, 2011,1(2)022103. doi: 10.1063/1.3582814
Koski KJ, ha J J, Reed B W. High-Density Chemical Intercalation of Zero-Valent Copper into Bi2Se3 Nanoribbons[J]. J Am Chem Soc, 2012,134(18):7584-7587. doi: 10.1021/ja300368x
Xiong F, Wang H, Liu X. Li Intercalation in MoS2:In Situ Observation of Its Dynamics and Tuning Optical and Electrical Properties[J]. Nano Lett, 2015,15(10):6777-6784. doi: 10.1021/acs.nanolett.5b02619
Gong Y, Yuan H, Wu C L. Spatially Controlled Doping of Two-Dimensional SnS2 Through Intercalation for Electronics[J]. Nat Nanotechnol, 2018,13(4):294-299. doi: 10.1038/s41565-018-0069-3
Yang W, Xiao J, Ma Y. Tin Intercalated Ultrathin MoO3 Nanoribbons for Advanced Lithium-Sulfur Batteries[J]. Adv Energy Mater, 2019,9(7)1803137. doi: 10.1002/aenm.201803137
Chen K P, Chung F R, Wang M. Dual Element Intercalation into 2D Layered Bi2Se3 Nanoribbons[J]. J Am Chem Soc, 2015,137(16):5431-5437. doi: 10.1021/jacs.5b00666
Naguib M, Kurtoglu M, Presser V. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2[J]. Adv Mater, 2011,23(37):4248-4253. doi: 10.1002/adma.201102306
Jung Y, Zhou Y, Cha J J. Intercalation in Two-Dimensional Transition Metal Chalcogenides[J]. Inorg Chem Front, 2016,3(4):452-463.
Luo W, Wan J, Ozdemir B. Potassium Ion Batteries with Graphitic Materials[J]. Nano lett, 2015,15(11):7671-7677. doi: 10.1021/acs.nanolett.5b03667
Wang C, He Q, Halim U. Monolayer Atomic Crystal Molecular Superlattices[J]. Nature, 2018,555(7695):231-236. doi: 10.1038/nature25774
Oakes L, Carter R, Hanken T. Interface Strain in Vertically Stacked Two-Dimensional Heterostructured Carbon-MoS2 Nanosheets Controls Electrochemical Reactivity[J]. Nat Commun, 2016,711796. doi: 10.1038/ncomms11796
Winter M, Besenhard J O, Spahr M E. Insertion Electrode Materials for Rechargeable Lithium Batteries[J]. Adv Mater, 1998,10(10):725-763. doi: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z
Hui J, Burgess M, Zhang J. Layer Number Dependence of Li+ Intercalation on Few-Layer Graphene and Electrochemical Imaging of Its Solid-Electrolyte Interphase Evolution[J]. ACS Nano, 2016,10(4):4248-4257. doi: 10.1021/acsnano.5b07692
Lin Z, Liu Y, Halim U. Solution-Processable 2D Semiconductors for High-Performance Large-Area Electronics[J]. Nature, 2018,562(7726):254-258. doi: 10.1038/s41586-018-0574-4
Yu W, Li J, Herng T S. Chemically Exfoliated VSe2 Monolayers with Room-Temperature Ferromagnetism[J]. Adv Mater, 2019,31(40)e1903779.
Hor Y S, Checkelsky J G, Qu D. Superconductivity and Non-Metallicity Induced by Doping the Topological Insulators Bi2Se3 and Bi2Te3[J]. J Phys Chem Solids, 2011,72(5):572-576. doi: 10.1016/j.jpcs.2010.10.027
Bediako D K, Rezaee M, Yoo H. Heterointerface Effects in the Electrointercalation of Van Der Waals Heterostructures[J]. Nature, 2018,558(7710):425-429. doi: 10.1038/s41586-018-0205-0
Mengfei He , Chao Chen , Yue Tang , Si Meng , Zunfa Wang , Liyu Wang , Jiabao Xing , Xinyu Zhang , Jiahui Huang , Jiangbo Lu , Hongmei Jing , Xiangyu Liu , Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
Yihao Zhao , Jitian Rao , Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
Yongzhi LI , Han ZHANG , Gangding WANG , Yanwei SUI , Lei HOU , Yaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
Aidang Lu , Yunting Liu , Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
*Å(Å=0.1 nm)is an abolish unit
*Å(Å=0.1 nm)is an abolish unit