Citation: WANG Lei, GONG Yongji. Research Progress of Intercalation Methods of Two-Dimensional Materials[J]. Chinese Journal of Applied Chemistry, ;2020, 37(8): 855-864. doi: 10.11944/j.issn.1000-0518.2020.08.200086 shu

Research Progress of Intercalation Methods of Two-Dimensional Materials

  • Corresponding author: GONG Yongji, yongjigong@buaa.edu.cn
  • Received Date: 23 March 2020
    Revised Date: 6 May 2020
    Accepted Date: 2 June 2020

Figures(7)

  • Two-dimensional (2D) materials have attracted widespread attention due to their unique electrical, optical, and magnetic properties, and how to modify two-dimensional materials is a research hotspot. The intercalation method is one of the main methods of improving the properties of 2D materials. During the intercalation process, guest particles are inserted between the van der Waals layers of the host material, causing changes in the physical and chemical properties of the 2D materials. Gas phase intercalation, liquid phase intercalation, and solid phase intercalation can improve properties of 2D materials. This article mainly introduces the intercalation methods of 2D materials, analyzes their advantages and drawbacks, and proposes how to apply intercalation methods to improve electrical, optical properties of 2D materials.
  • 加载中
    1. [1]

      Novoselov K S, Geim A K, Morozov S V. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004,306(5696):666-669. doi: 10.1126/science.1102896

    2. [2]

      Zhan D, Sun L, Ni Z H. FeCl3-Based Few-Layer Graphene Intercalation Compounds:Single Linear Dispersion Electronic Band Structure and Strong Charge Transfer Doping[J]. Adv Funct Mater, 2010,20(20):3504-3509. doi: 10.1002/adfm.201000641

    3. [3]

      Jung N, Kim B, Crowther A C. Optical Reflectivity and Raman Scattering in Few-Layer-Thick Graphene Highly Doped by K and Rb[J]. ACS Nano, 2011,5(7):5708-5716. doi: 10.1021/nn201368g

    4. [4]

      Bao W, Wan J, Han X. Approaching the Limits of Transparency and Conductivity in Graphitic Materials Through Lithium Intercalation[J]. Nat Commun, 2014,5(1):1-9.  

    5. [5]

      Koski K J, Wessells C D, Reed B W. Chemical Intercalation of Zerovalent Metals into 2D Layered Bi2Se3 Nanoribbons[J]. J Am Chem Soc, 2012,134(33):13773-13779. doi: 10.1021/ja304925t

    6. [6]

      Jung N, Kim N, Jockusch S. Charge Transfer Chemical Doping of Few Layer Graphenes:Charge Distribution and Band Gap Formation[J]. Nano Lett, 2009,9(12):4133-4137. doi: 10.1021/nl902362q

    7. [7]

      Mashtalir O, Naguib M, Mochalin V N. Intercalation and Delamination of Layered Carbides and Carbonitrides[J]. Nat Commun, 2013,4(1):1-7.  

    8. [8]

      Stark M S, Kuntz K L, Martens S J. Intercalation of Layered Materials from Bulk to 2D[J]. Adv Mater, 2019,31(27)1808213. doi: 10.1002/adma.201808213

    9. [9]

      Whittingha S M. Intercalation Chemistry[M]. Elsevier, 2012.

    10. [10]

      Zhao W, Tan P, Zhang J. Charge Transfer and Optical Phonon Mixing in Few-Layer Graphene Chemically Doped with Sulfuric Acid[J]. Phys Rev B, 2010,82(24)245423. doi: 10.1103/PhysRevB.82.245423

    11. [11]

      Falardeau E, Hanlon L, Thompson T. Direct Synthesis of Stage 1-3 Intercalation Compounds of Arsenic Pentafluoridein Graphite[J]. Inorg Chem, 1978,17(2):301-303.  

    12. [12]

      Müller-Warmuth W, Schöllhorn R. Progress in Intercalation Research[M]. Springer Science & Business Media, 2012.

    13. [13]

      Eklund P, Kambe N, Dresselhaus G. In-Plane Intercalate Lattice Modes in Graphite-Bromine Using Raman Spectroscopy[J]. Phys Rev B, 1978,18(12)7069. doi: 10.1103/PhysRevB.18.7069

    14. [14]

      Mansour A E, Dey S, Amassian A. Bromination of Graphene:A New Route to Making High Performance Transparent Conducting Electrodes with Low Optical Losses[J]. ACS Appl Mater Interfaces, 2015,7(32):17692-17699. doi: 10.1021/acsami.5b03274

    15. [15]

      Jung N, Crowther A C, Kim N. Raman Enhancement on Graphene:Adsorbed and Intercalated Molecular Species[J]. ACS Nano, 2010,4(11):7005-7013. doi: 10.1021/nn102227u

    16. [16]

      Eklund P, Dresselhaus G, Dresselhaus M. Raman Scattering from In-Plane Lattice Modes in Low-Stage Graphite-Alkali-Metal Compounds[J]. Phys Rev B, 1977,16(8)3330. doi: 10.1103/PhysRevB.16.3330

    17. [17]

      Nemanich R, Solin S, Guerard D. Raman Scattering from Intercalated Donor Compounds of Graphite[J]. Phys Rev B, 1977,16(6)2965. doi: 10.1103/PhysRevB.16.2965

    18. [18]

      Eklund P, Subbaswamy K. Analysis of Breit-Wigner Line Shapes in the Raman Spectra of Graphite Intercalation Compounds[J]. Phys Rev B, 1979,20(12)5157. doi: 10.1103/PhysRevB.20.5157

    19. [19]

      Boeri L, Bachelet G B, Giantomassi M. Electron-Phonon Interaction in Graphite Intercalation Compounds[J]. Phys Rev B, 2007,76(6)064510. doi: 10.1103/PhysRevB.76.064510

    20. [20]

      Caswell N, Solin S. Vibrational Excitations of Pure FeCl3 and Graphite Intercalated with Ferric Chloride[J]. Solid State Commun, 1978,27(10):961-967. doi: 10.1016/0038-1098(78)91015-3

    21. [21]

      Underhill C, Leung S, Dresselhaus G. Infrared and Raman Spectroscopy of Graphite-Ferric Chloride[J]. Solid State Commun, 1979,29(11):769-774. doi: 10.1016/0038-1098(79)90158-3

    22. [22]

      Kim N, Kim K S, Jung N. Synthesis and Electrical Characterization of Magnetic Bilayer Graphene Intercalate[J]. Nano Lett, 2011,11(2):860-865. doi: 10.1021/nl104228f

    23. [23]

      Zhao W, Tan P H, Liu J. Intercalation of Few-Layer Graphite Flakes with FeCl3:Raman Determination of Fermi Level, Layer by Layer Decoupling, and Stability[J]. J Am Chem Soc, 2011,133(15):5941-5946. doi: 10.1021/ja110939a

    24. [24]

      Hooley J, Bartlett M, Liengme B. A Mossbauer Study of Graphite Iron Chloride Compounds[J]. Carbon, 1968,6(5):681-685. doi: 10.1016/0008-6223(68)90012-2

    25. [25]

      Kanetani K, Sugawara K, Sato T. Ca Intercalated Bilayer Graphene as a Thinnest Limit of Superconducting C6Ca[J]. Proc Natl Acad Sci USA, 2012,109(48):19610-19613. doi: 10.1073/pnas.1208889109

    26. [26]

      Sugawara K, Kanetani K, Sato T. Fabrication of Li-Intercalated Bilayer Graphene[J]. AIP Adv, 2011,1(2)022103. doi: 10.1063/1.3582814

    27. [27]

      Koski KJ, ha J J, Reed B W. High-Density Chemical Intercalation of Zero-Valent Copper into Bi2Se3 Nanoribbons[J]. J Am Chem Soc, 2012,134(18):7584-7587. doi: 10.1021/ja300368x

    28. [28]

      Xiong F, Wang H, Liu X. Li Intercalation in MoS2:In Situ Observation of Its Dynamics and Tuning Optical and Electrical Properties[J]. Nano Lett, 2015,15(10):6777-6784. doi: 10.1021/acs.nanolett.5b02619

    29. [29]

      Gong Y, Yuan H, Wu C L. Spatially Controlled Doping of Two-Dimensional SnS2 Through Intercalation for Electronics[J]. Nat Nanotechnol, 2018,13(4):294-299. doi: 10.1038/s41565-018-0069-3

    30. [30]

      Yang W, Xiao J, Ma Y. Tin Intercalated Ultrathin MoO3 Nanoribbons for Advanced Lithium-Sulfur Batteries[J]. Adv Energy Mater, 2019,9(7)1803137. doi: 10.1002/aenm.201803137

    31. [31]

      Chen K P, Chung F R, Wang M. Dual Element Intercalation into 2D Layered Bi2Se3 Nanoribbons[J]. J Am Chem Soc, 2015,137(16):5431-5437. doi: 10.1021/jacs.5b00666

    32. [32]

      Naguib M, Kurtoglu M, Presser V. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2[J]. Adv Mater, 2011,23(37):4248-4253. doi: 10.1002/adma.201102306

    33. [33]

      Jung Y, Zhou Y, Cha J J. Intercalation in Two-Dimensional Transition Metal Chalcogenides[J]. Inorg Chem Front, 2016,3(4):452-463.  

    34. [34]

      Luo W, Wan J, Ozdemir B. Potassium Ion Batteries with Graphitic Materials[J]. Nano lett, 2015,15(11):7671-7677. doi: 10.1021/acs.nanolett.5b03667

    35. [35]

      Wang C, He Q, Halim U. Monolayer Atomic Crystal Molecular Superlattices[J]. Nature, 2018,555(7695):231-236. doi: 10.1038/nature25774

    36. [36]

      Oakes L, Carter R, Hanken T. Interface Strain in Vertically Stacked Two-Dimensional Heterostructured Carbon-MoS2 Nanosheets Controls Electrochemical Reactivity[J]. Nat Commun, 2016,711796. doi: 10.1038/ncomms11796

    37. [37]

      Winter M, Besenhard J O, Spahr M E. Insertion Electrode Materials for Rechargeable Lithium Batteries[J]. Adv Mater, 1998,10(10):725-763. doi: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z

    38. [38]

      Hui J, Burgess M, Zhang J. Layer Number Dependence of Li+ Intercalation on Few-Layer Graphene and Electrochemical Imaging of Its Solid-Electrolyte Interphase Evolution[J]. ACS Nano, 2016,10(4):4248-4257. doi: 10.1021/acsnano.5b07692

    39. [39]

      Lin Z, Liu Y, Halim U. Solution-Processable 2D Semiconductors for High-Performance Large-Area Electronics[J]. Nature, 2018,562(7726):254-258. doi: 10.1038/s41586-018-0574-4

    40. [40]

      Yu W, Li J, Herng T S. Chemically Exfoliated VSe2 Monolayers with Room-Temperature Ferromagnetism[J]. Adv Mater, 2019,31(40)e1903779.  

    41. [41]

      Hor Y S, Checkelsky J G, Qu D. Superconductivity and Non-Metallicity Induced by Doping the Topological Insulators Bi2Se3 and Bi2Te3[J]. J Phys Chem Solids, 2011,72(5):572-576. doi: 10.1016/j.jpcs.2010.10.027

    42. [42]

      Bediako D K, Rezaee M, Yoo H. Heterointerface Effects in the Electrointercalation of Van Der Waals Heterostructures[J]. Nature, 2018,558(7710):425-429. doi: 10.1038/s41586-018-0205-0

  • 加载中
    1. [1]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    2. [2]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    3. [3]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    4. [4]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    5. [5]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    6. [6]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    7. [7]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    8. [8]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    9. [9]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    10. [10]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    11. [11]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    12. [12]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    13. [13]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    14. [14]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    15. [15]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    17. [17]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    18. [18]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    19. [19]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    20. [20]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

Metrics
  • PDF Downloads(172)
  • Abstract views(4432)
  • HTML views(2321)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return