Citation: WEI Zhenye, MENG Junling, WANG Haocong, ZHANG Wenwen, LIU Xiaojuan, MENG Jian. Improving the Electrocatalytic Activity of La2NiO4+δ Cathode by Surface Modification with Conformal Heterojunction[J]. Chinese Journal of Applied Chemistry, ;2020, 37(8): 939-951. doi: 10.11944/j.issn.1000-0518.2020.08.200044 shu

Improving the Electrocatalytic Activity of La2NiO4+δ Cathode by Surface Modification with Conformal Heterojunction

  • Corresponding author: MENG Junling, mengjunling@ciac.ac.cn LIU Xiaojuan, lxjuan@ciac.ac.cn
  • Received Date: 17 February 2020
    Revised Date: 23 March 2020
    Accepted Date: 28 April 2020

    Fund Project: the National Natural Science Foundation of China(No.21571174, No.21590794), and the Provincial Natural Science Foundation of Jilin(No.20190201106JC)the National Natural Science Foundation of China 21571174the Provincial Natural Science Foundation of Jilin 20190201106JCthe National Natural Science Foundation of China 21590794

Figures(8)

  • Tuning the existing cathode surface to construct a hetero-interface configuration has been widely applied to improve its oxygen reduction reaction (ORR) activity. Here we report our findings on effective acceleration of the ORR kinetics of La2NiO4+δ (LNO) cathode by conformal Pr2NiO4+δ (PNO) modification. Meanwhile, the mechanism of the surface modification on ORR activity is revealed. Firstly, a highly active (110) plane for oxygen reduction emerges under LNO deposition. Secondly, the PNO modified layer with~5 nm thick displays the smallest polarization resistance, which is 21 times less than that of LNO (~5 nm) referenced cathode. Meanwhile, PNO (~5 nm) heterojunction exhibits an alerted ORR kinetics because of different oxygen defect chemistries of the top layer, in which the porous LNO backbone provides a pathway to favorably transport both of oxygen ions and electrons, while the PNO decorating offers rich surface oxygen defects to further enhance the ORR activity.
  • 加载中
    1. [1]

      Steele B C H, Heinzel A. Materials for Fuel-Cell Technologies[J]. Nature, 2001,414(6861):345-352. doi: 10.1038/35104620

    2. [2]

      Ormerod R M. Solid Oxide Fuel Cells[J]. Chem Soc Rev, 2003,32(1):17-18. doi: 10.1039/b105764m

    3. [3]

      Shao Z P, Haile S M. A High-Performance Cathode for the Next Generation of Solid-Oxide Fuel Cells[J]. Mater Sustainable Energy, 2011,431(9):255-258. doi: 10.1038/nature02863

    4. [4]

      Duan C, Hook D, Chen Y. Zr and Y Co-doped Perovskite as a Stable, High Performance Cathode for Solid Oxide Fuel Cells Operating Below 500℃[J]. Environ Sci, 2017,10(1):176-182.  

    5. [5]

      Lashtabeg A, Skinner S J. Solid Oxide Fuel Cells-A Challenge for Materials Chemists[J]. J Mater Chem, 2006,16(31):3161-3170. doi: 10.1039/B603620A

    6. [6]

      Liu Q, Dong X H, Xia G L. A Novel Electrode Material for Symmetrical SOFCs[J]. Adv Mater, 2010,22(48):5478-5482. doi: 10.1002/adma.201001044

    7. [7]

      Dulli H, Dowben P A, Liou S H. Surface Segregation and Restructuring of Colossal-Magnetoresistant Manganese Perovskites La0.65Sr0.35MnO3[J]. Phys Rev B, 2000,62(22):R14629-R14632. doi: 10.1103/PhysRevB.62.R14629

    8. [8]

      Cai Z, Kubicek M, Fleig J. Chemical Heterogeneities on La0.6Sr0.4CoO3-delta Thin Films-correlations to Cathode Surface Activity and Stability[J]. Chem Mater, 2012,24(6):1116-1127. doi: 10.1021/cm203501u

    9. [9]

      Lee W, Han J W, Chen Y. Cation Size Mismatch and Charge Interactions Drive Dopant Segregation at the Surfaces of Manganite Perovskites[J]. J Am Chem Soc, 2013,135(21):7909-7925. doi: 10.1021/ja3125349

    10. [10]

      Tellez H, Druce J, Kilner J A. Relating Surface Chemistry and Oxygen Surface Exchange in LnBaCo2O5+δ Air Electrodes[J]. Chem Mater, 2015,182:145-157.  

    11. [11]

      Sase M, Hermes F, Yashiro K. Enhancement of Oxygen Surface Exchange at the Hetero-interface of (La, Sr)CoO3/(La, Sr)2CoO4 with PLD-Layered Films[J]. J Electrochem Soc, 2008,155(8):B793-B797. doi: 10.1149/1.2928612

    12. [12]

      Yoon J, Cho S, Kim J H. Vertically Aligned Nanocomposite Thin Films as a Cathode/Electrolyte Interface Layer for Thin-Film Solid-Oxide Fuel Cells[J]. Adv Funct Mater, 2009,19(24):3868-3873. doi: 10.1002/adfm.200901338

    13. [13]

      Crumlin E J, Mutoro E, Ahn S J. Oxygen Reduction Kinetics Enhancement on a Heterostructured Oxide Surface for Solid Oxide Fuel Cells[J]. J Phys Chem Lett, 2010,1(21):3149-3155. doi: 10.1021/jz101217d

    14. [14]

      Lynch M E, Yang L, Qin W. Enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δ Durability and Surface Electrocatalytic Activity by La0.85Sr0.15MnOδ Investigated Using a New Test Electrode Platform[J]. Energy Environ Sci, 2011,4(6):2249-2258. doi: 10.1039/c1ee01188j

    15. [15]

      Ma W, Kim J J, Tsvetkov N. Vertically Aligned Nanocomposite La0.8Sr0.2CoO3/(La0.5Sr0.5)2CoO4 Cathodes-Electronic Structure, Surface Chemistry and Oxygen Reduction Kinetics[J]. J Mater Chem A, 2015,3(1):207-219.  

    16. [16]

      Choi H J, Bae K, Grieshammer S. Surface Tuning of Solid Oxide Fuel Cell Cathode by Atomic Layer Deposition[J]. Adv Energy Mater, 2018,8(33):1802506-1802514. doi: 10.1002/aenm.201802506

    17. [17]

      Sase M, Yashiro K, Sato K. Enhancement of Oxygen Exchange at the Hetero Interface of (La, Sr)CoO3/(La, Sr)2CoO4 in Composite Ceramics[J]. Solid State Ionics, 2008,178(35/36):1843-1852.  

    18. [18]

      Han J W, Yildiz B. Mechanism for Enhanced Oxygen Reduction Kinetics at the (La, Sr)CoO3-δ/(La, Sr)2CoO4+δ Hetero-Interface[J]. Energy Environ Sci, 2012,5(9):8598-8607. doi: 10.1039/c2ee03592h

    19. [19]

      Chen Y, Cai Z, Kuru Y. Electronic Activation of Cathode Superlattices at Elevated Temperatures-Source of Markedly Accelerated Oxygen Reduction Kinetics[J]. Adv Energy Mater, 2013,3(9):1221-1229. doi: 10.1002/aenm.201300025

    20. [20]

      Kushima A, Yildiz B. Oxygen Ion Diffusivity in Strained Yttria Stabilized Zirconia:Where is the Fastest Strain?[J]. J Mater Chem, 2010,20(23):4809-4819. doi: 10.1039/c000259c

    21. [21]

      Li X, Benedek N A. Enhancement of Ionic Transport in Complex Oxides Through Soft Lattice Modes and Epitaxial Strain[J]. Chem Mater, 2015,27(7):2647-2652. doi: 10.1021/acs.chemmater.5b00445

    22. [22]

      Halat D M, Dervişlu R, Kim G. Probing Oxide-Ion Mobility in the Mixed Ionic-Electronic Conductor La2NiO4+δ by Solid-State O-17 MAS NMR Spectroscopy[J]. J Am Chem Soc, 2016,138(36):11958-11969. doi: 10.1021/jacs.6b07348

    23. [23]

      Gu X K, Carneiro J S A, Samira S. Efficient Oxygen Electrocatalysis by Nanostructured Mixed-Metal Oxides[J]. J Am Chem Soc, 2018,140(26):8128-8137. doi: 10.1021/jacs.7b11138

    24. [24]

      Xu S, Jacobs R, Morgan D. Factors Controlling Oxygen Interstitial Diffusion in the Ruddlesden-Popper Oxide La2-xSrxNiO4+δ[J]. Chem Mater, 2018,30(20):7166-7177. doi: 10.1021/acs.chemmater.8b03146

    25. [25]

      Peng B, Chen G, Wang T. Hydride Reduced LaSrCoO4-δ as New Cathode Material for Ba(Zr0.1Ce0.7Y0.2)O3 Based Intermediate Temperature Solid Oxide Fuel Cells[J]. J Power Sources, 2012,201:174-178. doi: 10.1016/j.jpowsour.2011.10.121

    26. [26]

      Yashima M, Enoki M, Wakita T. Structural Disorder and Diffusional Pathway of Oxide Ions in a Doped Pr2NiO4-Based Mixed Conductor[J]. J Am Chem Soc, 2008,130(9):2762-2763. doi: 10.1021/ja711478h

    27. [27]

      Berger C, Egger A, Merkle R. Oxygen Surface Exchange Kinetics of Pr2(Ni, Co)O4+δ Thin-Film Model Electrodes[J]. J Electrochem Soc, 2019,166(14):F1088-F1095. doi: 10.1149/2.0521914jes

    28. [28]

      Tropin E, Ananyev M, Porotnikova N. Oxygen Surface Exchange and Diffusion in Pr1.75Sr0.25Ni0.75Co0.25Oδ[J]. Phys Chem Chem Phys, 2019,31(9):4779-4790. doi: 10.1039/C9CP00172G

    29. [29]

      Pérez-Flores J C, Pérez-Coll D, García-Martín S. A-and B-site Ordering in the A-Cation-Deficient Perovskite Series La2-xNiTiO6-δ (0 ≤ x < 0.20) and Evaluation as Potential Cathodes for Solid Oxide Fuel Cells[J]. Chem Mater, 2013,25(12):2484-2494. doi: 10.1021/cm4008014

    30. [30]

      Yamada A, Suzuki Y, Saka K. Ruddlesden-Popper-Type Epitaxial Film as Oxygen Electrode for Solid-Oxide Fuel Cells[J]. Adv Mater, 2008,20(21):4124-4138. doi: 10.1002/adma.200801199

    31. [31]

      Huan Y, Chen S, Zeng R. Intrinsic Effects of Ruddlesden-Popper-Based Bi Functional Catalysts for High-Temperature Oxygen Reduction and Evolution[J]. Adv Energy Mater, 2019,9(29):1901573-1901581. doi: 10.1002/aenm.201901573

    32. [32]

      Duan Z, Yang M, Yan A. Ba0.5Sr0.5Co0.8Fe0.2O3-δ as a Cathode for IT-SOFCs with a GDC Interlayer[J]. J Power Sources, 2006,160(1):57-64. doi: 10.1016/j.jpowsour.2006.01.092 

    33. [33]

      Kim Y M, Kim-Lohsoontorn P, Bae J. Effect of Unsintered Gadolinium-Doped Ceria Buffer Layer on Performance of Metal-Supported Solid Oxide Fuel Cells Using Unsintered Barium Strontium Cobalt Ferrite Cathode[J]. J Power Sources, 2010,195(19):6420-6427. doi: 10.1016/j.jpowsour.2010.03.095

    34. [34]

      Ding D, Liu M, Liu Z. Efficient Electro-catalysts for Enhancing Surface Activity and Stability of SOFC Cathodes[J]. Adv Energy Mater, 2013,3(9):1149-1154. doi: 10.1002/aenm.201200984

    35. [35]

      Ding D, Li X, Lai S Y. Enhancing SOFC Cathode Performance by Surface Modification Through Infiltration[J]. Energy Environ Sci, 2014,7(2):552-575. doi: 10.1039/c3ee42926a

    36. [36]

      Chen Y, Chen Y, Ding D. A Robust and Active Hybrid Catalyst for Facile Oxygen Reduction in Solid Oxide Fuel Cells[J]. Energy Environ Sci, 2017,10(4):964-971. doi: 10.1039/C6EE03656B

    37. [37]

      Jacobson , A J. Materials for Solid Oxide Fuel Cells[J]. Chem Mater, 2010,22(3):660-674. doi: 10.1021/cm902640j

    38. [38]

      Takeda Y, Kanno R, Noda M. Cathodic Polarization Phenomena of Perovskite Oxide Electrodes with Stabilized Zirconia[J]. J Electrochem Soc, 1987,134(11):2656-2661. doi: 10.1149/1.2100267

    39. [39]

      Siebert E, Hammouche A, Kleitz M. Impedance Spectroscopy Analysis of La1-xSrxMnO3-Yttria-Stabilized Zirconia Electrode-Kinetics[J]. Electrochim Acta, 1995,40(11):1741-1753. doi: 10.1016/0013-4686(94)00361-4

    40. [40]

      Chen D, Ran R, Zhang K. Intermediate-Temperature Electrochemical Performance of a Polycrystalline PrBaCo2O5+δ Cathode on Samarium-Doped Ceria Electrolyte[J]. J Power Sources, 2009,188(1):96-105. doi: 10.1016/j.jpowsour.2008.11.045 

    41. [41]

      Chen H, Guo Z, Zhang L A. Improving the Electrocatalytic Activity and Durability of the La0.6Sr0.4Co0.2Fe0.8O3-δ Cathode by Surface Modification[J]. ACS Appl Mater Interface, 2018,10(46):39785-39793. doi: 10.1021/acsami.8b14693

    42. [42]

      Mukherjee K, Hanyamizu Y, Kim C S. Praseodymium Cuprate Thin Film Cathodes for Intermediate Temperature Solid Oxide Fuel Cells:Roles of Doping, Orientation, and Crystal Structure[J]. ACS Appl Mater Interface, 2016,8(50):34295-34302. doi: 10.1021/acsami.6b08977

    43. [43]

      Sun S, Zhang H, Pan M. Dynamic Simulation of Oxygen Transport Rates in Highly Ordered Electrodes for Proton Exchange Membrane Fuel Cells[J]. Fuel Cells, 2015,15(3):456-462. doi: 10.1002/fuce.201400094

    44. [44]

      Meng J, Liu X, Yao C. Bi-Doped La2ZnMnO6-δ and Relevant Bi-Deficient Compound as Potential Cathodes for Intermediate Temperature Solid Oxide Fuel Cells[J]. Solid State Ionics, 2015,279:32-38. doi: 10.1016/j.ssi.2015.07.016

    45. [45]

      Zhang L, Yao G, Song Z. Effects of Pr-Deficiency on Thermal Expansion and Electrochemical Properties in Pr1-xBaCo2O5+δ Cathodes for IT-SOFCs[J]. Electrochim Acta, 2016,212:522-534. doi: 10.1016/j.electacta.2016.07.014

  • 加载中
    1. [1]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    2. [2]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    3. [3]

      Quanyou GuoYue YangTingting HuHongqi ChuLijun LiaoXuepeng WangZhenzi LiLiping GuoWei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235

    4. [4]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    5. [5]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    6. [6]

      Zili Ma Zeyu Li Jun Lv . Shortening the formation time of oxide thin film photoelectrodes from hours to seconds. Chinese Journal of Structural Chemistry, 2025, 44(4): 100450-100450. doi: 10.1016/j.cjsc.2024.100450

    7. [7]

      Yue Wang Caixia Xu Xingtao Tian Siyu Wang Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167

    8. [8]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    9. [9]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    10. [10]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    11. [11]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    12. [12]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    13. [13]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    14. [14]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

    15. [15]

      Zhuangzhuang ZhangYaru QiaoJun ZhaoDai-Huo LiuMengmin JiaHongwei TangLiang WangDongmei DaiBao Li . Fluorine-doped K0.39Mn0.77Ni0.23O1.9F0.1 microspheres with highly reversible oxygen redox reaction for potassium-ion battery cathode. Chinese Chemical Letters, 2025, 36(3): 109907-. doi: 10.1016/j.cclet.2024.109907

    16. [16]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    17. [17]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    18. [18]

      Jiaqi LinPupu YangYimin JiangShiqian DuDongcai ZhangGen HuangJinbo WangJun WangQie LiuMiaoyu LiYujie WuPeng LongYangyang ZhouLi TaoShuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435

    19. [19]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    20. [20]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

Metrics
  • PDF Downloads(14)
  • Abstract views(667)
  • HTML views(195)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return