Citation: WANG Fengping, HU Xiaoqiang, DING Yanwei, LI Jielan, ZHANG Wei. Synergistic Inhibition Effect of Potassium Sorbate and Zn2+ Ions on Corrosion of Q235 Steel in NaCl Solution[J]. Chinese Journal of Applied Chemistry, ;2020, 37(8): 960-968. doi: 10.11944/j.issn.1000-0518.2020.08.200013 shu

Synergistic Inhibition Effect of Potassium Sorbate and Zn2+ Ions on Corrosion of Q235 Steel in NaCl Solution

  • Corresponding author: WANG Fengping, wang_fp@sohu.com
  • Received Date: 12 January 2020
    Revised Date: 5 March 2020
    Accepted Date: 13 April 2020

    Fund Project: the Technology Research Program of Liaoning Provincial Department of Education No. LF201783609the Technology Research Program of Liaoning Provincial Department of Education(No.LF201783609)

Figures(8)

  • The synergistic inhibition effect of potassium sorbate (PS) and Zn2+ ions on the corrosion of Q235 steel in 0.5 mol/L NaCl solution was studied by weight loss method, electrochemical method, X-ray photoelectron spectroscopy (XPS) and scanning electronic microscopy (SEM). The results of weight loss measurement show that potassium sorbate has some inhibition of corrosion of Q235 steel in 0.5 mol/L NaCl solution, the inhibition efficiency increases with the increase of concentration. When the added PS concentration is 25.0 g/L, the maximum inhibition efficiency is 38.37%. The combination of PS and Zn2+ ions has a significantly synergistic inhibition effect, the corrosion inhibition efficiency is as high as 91.03%. Potentiodynamic polarization shows that the mixture of PS and Zn2+ ions can simultaneously inhibit the cathodic, anodic corrosion reactions of Q235 steel, belonging to an anodic-type corrosion inhibitors. Impedance spectroscopy shows that the mixture can form a dense corrosion inhibitor film on the electrode surface. XPS analysis confirms that the corrosion inhibitor film consists of potassium sorbate, iron oxide/hydroxide and Zn(OH)2 precipitate.
  • 加载中
    1. [1]

      Xu W H, Han E H, Wang Z Y. Effect of Tannic Acid on Corrosion Behavior of Carbon Steel in NaCl Solution[J]. J Mater Sci Technol, 2019,35(1):64-75. doi: 10.1016/j.jmst.2018.09.001

    2. [2]

      Zeino A, Abdulazeez I, Khaled M. Mechanistic Study of Polyaspartic Acid(PASP) as Eco-friendly Corrosion Inhibitor on Mild Steel in 3%NaCl Aerated Solution[J]. J Mol Liq, 2018,250:50-62. doi: 10.1016/j.molliq.2017.11.160

    3. [3]

      Othman N K, Yahya S, Ismail M C. Corrosion Inhibition of Steel in 3.5%NaCl by Rice Straw Extract[J]. J Ind Eng Chem, 2019,70:299-310. doi: 10.1016/j.jiec.2018.10.030

    4. [4]

      Abelev E, Starosvetsky D, Ein-Eli Y. Potassium Sorbate-A New Aqueous Copper Corrosion Inhibitor Electrochemical and Spectroscopic Studies[J]. Electrochim Acta, 2007,52(5):1975-1982. doi: 10.1016/j.electacta.2006.08.012

    5. [5]

      Abelev E, Smith A J, Hassel A W. Potassium Sorbate Solutions as Chemical Mechanical Planarization(CMP) Based Slurries[J]. Electrochim Acta, 2007,52(16):5150-5158. doi: 10.1016/j.electacta.2007.02.010

    6. [6]

      Gelman D, Starosvetsky D, Ein-Eli Y. Copper Corrosion Mitigation by Binary Inhibitor Compositions of Potassium Sorbate and Benzotriazole[J]. Corros Sci, 2014,82:271-279. doi: 10.1016/j.corsci.2014.01.028

    7. [7]

      Tasic Z Z, Antonijevic M M, Petrovic M M B. The Influence of Synergistic Effects of 5-Methyl-1H-benzotriazole and Potassium Sorbate as well as 5-Methyl-1H-benzotriazole and Gelatin on the Copper Corrosion in Sulphuric Acid Solution[J]. J Mol Liq, 2016,219:463-473. doi: 10.1016/j.molliq.2016.03.064

    8. [8]

      Tasic Z, Petrovic M M, Radovanovic M. 5-Chloro-1H-benzotriazole and Potassium Sorbate as Binary Corrosion Inhibitor of Copper in Acidic Solution[J]. Zastita Materijala, 2018,59(2):206-215. doi: 10.5937/ZasMat1802206T

    9. [9]

      Tasic Z Z, Petrovic M M B, Antonijevic M M. The Influence of Chloride Ions on the Anti-corrosion Ability of Binary Inhibitor System of 5-Methyl-1H-benzotriazole and Potassium Sorbate in Sulfuric Acid Solution[J]. J Mol Liq, 2016,222:1-7. doi: 10.1016/j.molliq.2016.07.016

    10. [10]

      Han P, Chen C F, Li W H. Synergistic Effect of Mixing Cationic and Nonionic Surfactants on Corrosion Inhibition of Mild Steel in HCl:Experimental and Theoretical Investigations[J]. J Colloid Interface Sci, 2018,516:398-406. doi: 10.1016/j.jcis.2018.01.088

    11. [11]

      Casaletto M P, Figa V, Privitera A. Inhibition of COR-TEN Steel Corrosion by "Green" Extracts of Brassica Campestris[J]. Corros Sci, 2018,136:91-105. doi: 10.1016/j.corsci.2018.02.059

    12. [12]

      Ramezanzadeh M, Bahlakeh G, Ramezanzadeh B. Study of the Synergistic Effect of Mangifera Indica Leaves Extract and Zinc Ions on the Mild Steel Corrosion Inhibition in Simulated Seawater:Computational and Electrochemical Studies[J]. J Mol Liq, 2019,292111387. doi: 10.1016/j.molliq.2019.111387

    13. [13]

      Yan Y, Li W H, Cai L K. Electrochemical and Quantum Chemical Study of Purines as Corrosion Inhibitors for Mild Steel in 1M HCl Solution[J]. Electrochim Acta, 2008,53(20):5953-5960. doi: 10.1016/j.electacta.2008.03.065

    14. [14]

      Prabakaran M, Venkatesh M, Ramesh S. Corrosion Inhibition Behavior of Propyl Phosphonic Acid-Zn2+ System for Carbon Steel in Aqueous Solution[J]. Appl Surf Sci, 2013,276:592-603. doi: 10.1016/j.apsusc.2013.03.138

    15. [15]

      Prabakaran M, Ramesh S, Periasamy V. The Corrosion Inhibition Performance of Pectin with Propyl Phosphonic Acid and Zn2+ for Corrosion Control of Carbon Steel in Aqueous Solution[J]. Res Chem Intermed, 2014,41(7):4649-4671.  

    16. [16]

      SU Tiejun, LI Kehua, LOU Yunbai. Inhibition Behavior of 1-Phenylaminomethylbenzimidazole for Mild Steel in Hydrochloric Acid[J]. Chinese J Appl Chem, 2015,32(4):464-471.  

    17. [17]

      MA Yucong, FAN Baomin, WANG Manman. Two-step Preparation of Trazodone and Its Corrosion Inhibition Mechanism for Carbon Steel[J]. Chem J Chinese Univ, 2019,40(8):1706-1716.  

    18. [18]

      ZHENG Xingwen, GONG Min, CHEN Shilin. Corrosion Inhibition of Q235 Steel by Moxifloxacin in Hydrochloric Acid Solution[J]. Chinese J Appl Chem, 2017,34(8):955-964.  

    19. [19]

      Alagta A, Felhosi I, Bertoti I. Corrosion Protection Properties of Hydroxamic Acid Self-assembled Monlayer on Carbon Steel[J]. Corros Sci, 2008,50(6):1644-1649. doi: 10.1016/j.corsci.2008.02.008

    20. [20]

      Pech-Canul M A, Bartolo-Perez P. Inhibition Effects of N-Phosphono-methyl-glycine/Zn2+ Mixtures on Corrosion of Steel in Neutral Chloride Solutions[J]. Surf Coat Technol, 2004,184:133-140. doi: 10.1016/j.surfcoat.2003.11.018

    21. [21]

      Zhang B R, He C J, Wang C. Synergistic Corrosion Inhibition of Environment-Friendly Inhibitors on the Corrosion of Carbon Steel in Soft Water[J]. Corros Sci, 2015,94:6-20. doi: 10.1016/j.corsci.2014.11.035

    22. [22]

      Rao S S, Appa R B V, Roopas Kiran S. Lactobionic Acid as a New Synergist in Combination with Phosphonate-Zn(Ⅱ) System for Corrosion Inhibition of Carbon Steel[J]. J Mater Sci Technol, 2014,30(1):77-89. doi: 10.1016/j.jmst.2013.10.003

  • 加载中
    1. [1]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    2. [2]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Xiao LiuHangqi LiuQian WangDandan ZhengSibo WangMasakazu AnpoGuigang Zhang . Rational synthesis of poly(heptazine imides) nanorod in ternary LiCl/NaCl/KCl for visible light hydrogen production. Chinese Chemical Letters, 2025, 36(12): 111621-. doi: 10.1016/j.cclet.2025.111621

    5. [5]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    6. [6]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    7. [7]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    8. [8]

      Shilong LiMing ZhaoYefei XuZhanyi LiuMian LiQing HuangXiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701

    9. [9]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    10. [10]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    11. [11]

      Yanfen PENGXinyue WANGTianbao LIUXiaoshuo WUYujing WEI . Syntheses and luminescence of four Cd(Ⅱ)/Zn(Ⅱ) complexes constructed by 1,3‐bis(4H‐1,2,4‐triazole)benzene. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1416-1426. doi: 10.11862/CJIC.20250018

    12. [12]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    13. [13]

      Zheng LiuYuqing BianGraham DawsonJiawei ZhuKai Dai . Rational constructing of Zn0.5Cd0.5S-diethylenetriamine/g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2O2 production. Chinese Chemical Letters, 2025, 36(9): 111272-. doi: 10.1016/j.cclet.2025.111272

    14. [14]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    15. [15]

      Tiantian Dai Xi Yang . Teaching Design and Reflection on the “Osmotic Pressure of Solutions” in Medical Chemistry. University Chemistry, 2025, 40(5): 268-275. doi: 10.12461/PKU.DXHX202411032

    16. [16]

      Chuan′an DINGWeibo YANShaoying WANGHao XIN . Preparation of wide-band gap copper indium gallium sulfide solar cells by solution method. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1755-1764. doi: 10.11862/CJIC.20250198

    17. [17]

      Yan Zhang Xiaoyan Cao Yiming Li Shuwei Xia Mutai Bao . Comparison of Electrolyte Solutions Section in Physical Chemistry Textbooks at Home and Abroad. University Chemistry, 2025, 40(9): 303-309. doi: 10.12461/PKU.DXHX202502027

    18. [18]

      Qianyun YeYuanyuan LiangYuhe YuanXiaohuan SunLiqi ZhuXuan WuJie HanRong Guo . pH-responsive chiral supramolecular cysteine-Zn2+-indocyanine green assemblies for triple-level chirality-specific anti-tumor efficacy. Chinese Chemical Letters, 2025, 36(5): 110432-. doi: 10.1016/j.cclet.2024.110432

    19. [19]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    20. [20]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

Metrics
  • PDF Downloads(8)
  • Abstract views(1308)
  • HTML views(216)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return