Citation: ZHANG Jingjing, XIAO Xin, SHI Dongjian, CHEN Mingqing. Morphology Regulation of Polydopamine Self-polymerization on the Surface of Strongly Electronegative Microspheres[J]. Chinese Journal of Applied Chemistry, ;2020, 37(7): 756-763. doi: 10.11944/j.issn.1000-0518.2020.07.200016 shu

Morphology Regulation of Polydopamine Self-polymerization on the Surface of Strongly Electronegative Microspheres

  • Corresponding author: CHEN Mingqing, mqchen@jiangnan.edu.cn
  • Received Date: 14 January 2020
    Revised Date: 16 March 2020
    Accepted Date: 23 April 2020

    Fund Project: the National Natural Science Foundation of China 21571084Supported by the National Natural Science Foundation of China(No.21571084), and the National Light Industry Technology and Engineering First-class Subject Independent Project(No.2018-19)the National Light Industry Technology and Engineering First-class Subject Independent Project 2018-19

Figures(6)

  • Dopamine (DA) has been proved to be able to oxidize and polymerize into polydopamine (PDA) on the surface of a variety of materials, however, the mechanism of the DA polymerization on strongly electronegative surfaces and the formed morphologies of PDA are not clear yet. In order to investigate the influence of the surface electronegativity and oxidation conditions on the rate of the oxidized self-polymerization and the morphology of the PDA layer, herein, polystyrene/polyacrylic acid nanoparticles (PS/PAA NPs) with PS as the core and PAA as the shell were prepared by soap-free emulsion polymerization. Then, PDA was coated on the surface of the PS/PAA NPs and the effect of different pH buffers, reaction time and the amount of DA on the polymerization process and the PDA morphologies were investigated. The morphology and size of the nanoparticles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Zeta potential. The results show that small PDA NPs are polymerized on the PS/PAA NPs surface to form the raspberry structure in the Tris buffer solution with a pH of 8.5, and the mass ratio of DA to PS/PAA NPs is 1:1. The formed PDA NPs become bigger with higher DA contents and longer reaction time. When DA is excess, it eventually forms a uniform PDA shell on the surface of microspheres. Zeta potential results show that the raspberry-like structure is formed due to the balance between electrostatic interaction and charge repulsion in the surface polymerization of PAA. A larger amount of DA and a longer reaction time result in the reduction of charge repulsion to form a dense uniform PDA shell layer. In addition, uniform PDA shell layers form on the surface of PS/SDS microspheres with less electronegativity and nonionic PS microspheres. Therefore, the PDA deposition on the surface of the anionic materials is influenced by the negative value of the surface.
  • 加载中
    1. [1]

      Liu Y, Ai K, Lu L. Polydopamine and Its Derivative Materials:Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields[J]. Chem Rev, 2014,114(9):5057-5115. doi: 10.1021/cr400407a

    2. [2]

      Liu Q, Yu B, Ye W. Highly Selective Uptake and Release of Charged Molecules by pH-Responsive Polydopamine Microcapsules[J]. Macromol Biosci, 2011,11(9):1227-1234. doi: 10.1002/mabi.201100061

    3. [3]

      ZHANG Zhuying, CHEN Jing, YU Jialei. Preparation and Properties of Polydopamine and Alginate Porous Complex Scaffolds[J]. Chinese J Appl Chem, 2018,35(6):665-673.  

    4. [4]

      WANG He, LUO Jing, LI Xiaojie. Efficient Preparation of Polydopamine Nanoparticles by Precipitation[J]. Chinese J Appl Chem, 2019,36(2):155-160.  

    5. [5]

      Zhang M, Zhang L, Chen Y. Precise Synthesis of Unique Polydopamine/Mesoporous Calcium Phosphate Hollow Janus Nanoparticles for Imaging-Guided Chemo-Photothermal Synergistic Therapy[J]. Chem Sci, 2017,8(12):8067-8077. doi: 10.1039/C7SC03521G

    6. [6]

      Yu X, Fan H, Wang L. Formation of Polydopamine Nanofibers with the Aid of Folic Acid[J]. Angew Chem Int Ed, 2014,53(46):12600-12604.  

    7. [7]

      Ma S, Qi Y X, Jiang X Q. Selective and Sensitive Monitoring of Cerebral Antioxidants Based on the Dye-Labeled DNA/Polydopamine Conjugates[J]. Anal Chem, 2016,88(23):11647-11653. doi: 10.1021/acs.analchem.6b03216

    8. [8]

      Li H, Jia Y, Wang A. Self-Assembly of Hierarchical Nanostructures from Dopamine and Polyoxometalate for Oral Drug Delivery[J]. Chemistry, 2014,20(2):499-504. doi: 10.1002/chem.201302660

    9. [9]

      Mateescu M, Metz-Boutigue M H, Bertani P. Polyelectrolytes to Produce Nanosized Polydopamine[J]. J Colloid Interface Sci, 2016,469:184-190. doi: 10.1016/j.jcis.2016.02.023

    10. [10]

      Schneider A, Hemmerle J, Allais M. Boric Acid as an Efficient Agent for the Control of Polydopamine Self-assembly and Surface Properties[J]. ACS Appl Mater Interfaces, 2018,10(9):7574-7580. doi: 10.1021/acsami.7b08356

    11. [11]

      Kohri M, Nannichi Y, Kohma H. Size Control of Polydopamine Nodules Formed on Polystyrene Particles During Dopamine Polymerization with Carboxylic Acid-Containing Compounds for the Fabrication of Raspberry-Like Particles[J]. Colloids Surf A:Physicochem Eng Asp, 2014,449:114-120. doi: 10.1016/j.colsurfa.2014.02.049

    12. [12]

      Haeshin, Shara, Dellatore. Mussel-Inspired Surface Chemistry for Multifunctional Coatings[J]. Science, 2007,318(5849):426-430. doi: 10.1126/science.1147241

    13. [13]

      Ball V, Del Frari D, Toniazzo V. Kinetics of Polydopamine Film Deposition as a Function of pH and Dopamine Concentration:Insights in the Polydopamine Deposition Mechanism[J]. J Colloid Interface Sci, 2012,386(1):366-372. doi: 10.1016/j.jcis.2012.07.030

    14. [14]

      Della Vecchia N F, Luchini A, Napolitano A. Tris Buffer Modulates Polydopamine Growth, Aggregation, and Paramagnetic Properties[J]. Langmuir, 2014,30(32):9811-9818. doi: 10.1021/la501560z

    15. [15]

      Ponzio F, Barth s J, Bour J. Oxidant Control of Polydopamine Surface Chemistry in Acids:A Mechanism-Based Entry to Superhydrophilic-Superoleophobic Coatings[J]. Chem Mater, 2016,28(13):4697-4705. doi: 10.1021/acs.chemmater.6b01587

    16. [16]

      Wei Q, Zhang F, Li J. Oxidant-Induced Dopamine Polymerization for Multifunctional Coatings[J]. Polym Chem, 2010,1(9):1430-1433. doi: 10.1039/c0py00215a

    17. [17]

      Chen M Q, Serizawa T, Kishida A. Graft Copolymers Having Hydrophobic Backbone and Hydrophilic Branches.XXIII.Particle Size Control of Poly(ethylene glycol)-Coated Polystyrene Nanoparticles Prepared by Macromonomer Method[J]. J Polym Sci Part A:Polym Chem, 1999,37:2155-2166. doi: 10.1002/(SICI)1099-0518(19990701)37:13<2155::AID-POLA31>3.0.CO;2-G

  • 加载中
    1. [1]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-0. doi: 10.3866/PKU.WHXB202406012

    2. [2]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    3. [3]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    4. [4]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    5. [5]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    6. [6]

      Guoqiang PengXiuyan LiMin LiZhibo SuFalu HuGuowei Zhou . Engineering efficient metal-organic frameworks for photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2026, 42(2): 100164-0. doi: 10.1016/j.actphy.2025.100164

    7. [7]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    8. [8]

      Xiaojun LiuLang QinYanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018

    9. [9]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    10. [10]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    11. [11]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    12. [12]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    13. [13]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    14. [14]

      Chengyan GeJiawei HuXingyu LiuYuxi SongChao LiuZhigang Zou . Self-integrated black NiO clusters with ZnIn2S4 microspheres for photothermal-assisted hydrogen evolution by S-scheme electron transfer mechanism. Acta Physico-Chimica Sinica, 2026, 42(1): 100154-0. doi: 10.1016/j.actphy.2025.100154

    15. [15]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    16. [16]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    17. [17]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    18. [18]

      Pan Li Huguo Shen Cong Hua Jinjie Fang Xiangying Chi Quan Jiang Zichen Feng Ye Kang Bin Zheng . Synthesis and Characterization of an Aggregation-Induced Emission-Active Organic Cage Molecule: A Proposed Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(11): 337-345. doi: 10.12461/PKU.DXHX202502083

    19. [19]

      Jiaxuan ZuoKun ZhangJing WangXifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042

    20. [20]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

Metrics
  • PDF Downloads(92)
  • Abstract views(7374)
  • HTML views(3315)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return