Citation: HE Yufang, YAN Pinping, HUANG Baoquan, LUO Fubin, LI Hongzhou, QIAN Qingrong, CHEN Qinghua. Thermal Conductivity and Crystallization Behavior of Polyethylene Glycol/Boron Nitride Phase Change Composites[J]. Chinese Journal of Applied Chemistry, ;2020, 37(6): 650-657. doi: 10.11944/j.issn.1000-0518.2020.06.200031 shu

Thermal Conductivity and Crystallization Behavior of Polyethylene Glycol/Boron Nitride Phase Change Composites

  • Corresponding author: LUO Fubin, luofubin@fjnu.edu.cn LI Hongzhou, lihongzhou@fjnu.edu.cn
  • Received Date: 28 January 2020
    Revised Date: 20 February 2020
    Accepted Date: 14 April 2020

    Fund Project: the Foundation of Quangang Petrochemical Research Institute, Fujian Normal University 2018YJY03the National Natural Science Foundation of China 51903049Supported by the National Natural Science Foundation of China(No.51903049), and the Foundation of Quangang Petrochemical Research Institute, Fujian Normal University(No.2018YJY03)

Figures(6)

  • In this paper, polyethylene glycol/boron nitride (PEG/BN) phase change composite was prepared by molten blending method and the influence of the flake size of BN on the thermal conductivity and crystallization behavior of phase change composites was studied. The microstructure, thermal conductivity and phase transition performance of the prepared composites were investigated by scanning electron microscope (SEM), thermal constant analyzer, infrared thermal imaging analyzer and differential scanning calorimeter (DSC). The DSC results of were analyzed by Mo Zhishen method. Results show that larger diameter (50 μm) BN can improve the thermal conductivity of PEG more effectively. When the weight fraction of BN filler content is 40%, the thermal conductivity of phase change composite can reach 5.04 W/(m·K). Under conditions of rapid cooling, BN filler with a diameter of 50 μm can shorten the semi crystallization time and increase the crystallization rate of PEG, and make the phase change composites have a large phase change enthalpy.
  • 加载中
    1. [1]

      Lin M, Wang C C. Preparation and Characterization of GO/PEG Photo-thermal Conversion Form-Stable Composite Phase Change Materials[J]. Renew Energy, 2019,141:1005-1012.  

    2. [2]

      CHEN Suqing, HUANG Guobo, BAO Jianshe. Preparation and Properties of Phase Change Energy Storage Materials Enhanced by Thermal Conductivity of Graphene[J]. New Carbon Mater, 2018,33(3):262-267.  

    3. [3]

      TONG Cang, LI Xiangli, DUANMU Lin. Preparation and Properties of Polyethylene Glycol/Silica/Expanded Graphite Phase Change Energy Storage Materials[J]. District Heat Supply, 2018(3):100-104.  

    4. [4]

      Deng Y, Li J H, Qian T T. Thermal Conductivity Enhancement of Polyethylene Glycol/Expanded Vermiculite Shape-Stabilized Composite Phase Change Materials with Silver Nanowire for Thermal Energy Storage[J]. Chem Eng J, 2016,295:427-435.  

    5. [5]

      Wang W T, Tang B T, Ju B Z. Fe3O4-Functionalized Graphene Nanosheet Embedded Phase Change Material Composites:Efficient Magnetic-and Sunlight-Driven Energy Conversion and Storage[J]. J Mater Chem A, 2017,5(3):958-968.  

    6. [6]

      YAN Pinping, LUO Fubin, HUANG Baoquan. Properties of Thermal Conductivity Enhanced Polyethylene Glycol-Based Phase Change Composites[J]. Chinese J Appl Chem, 2020,37(1):46-53.  

    7. [7]

      Luo F B, Yan P P, Qian Q R. Highly Thermally Conductive Phase Change Composites for Thermal Energy Storage Featuring Shape Memory[J]. Compos Part A, 2020,129105706.  

    8. [8]

      Yang J, Tang L S, Bao R Y. Largely Enhanced Thermal Conductivity of Poly(Ethylene Glycol)/Boron Nitride Composite Phase Change Materials for Solar-Thermal-Electric Energy Conversion and Storage with Very Low Content of Graphene Nanoplatelets[J]. Chem Eng J, 2017,315:481-490.  

    9. [9]

      Li C C, Xie B S, Chen D L. Ultrathin Graphite Sheets Stabilized Stearic Acid as a Composite Phase Change Material for Thermal Energy Storage[J]. Energy, 2019,166:246-255.  

    10. [10]

      Dong W L, Liu H L, Behera J K. Wide Bandgap Phase Change Material Tuned Visible Photonics[J]. Adv Funct Mater, 2018,291806181.  

    11. [11]

      Zhao Y J, Min X, Huang Z H. Honeycomb-Like Structured Biological Porous Carbon Encapsulating PEG:A Shape-Stable Phase Change Material with Enhanced Thermal Conductivity for Thermal Energy Storage[J]. Energy Build, 2018,158:1049-1062.  

    12. [12]

      Zhou Y, Sheng D K, Liu X D. Synthesis and Properties of Crosslinking Halloysite Nanotubes/Polyurethane-Based Solid-Solid Phase Change Materials[J]. Sol Energy Mater Sol Cells, 2018,174:84-93.  

    13. [13]

      Wang J J, Yang M, Lu Y F. Surface Functionalization Engineering Driven Crystallization Behavior of Polyethylene Glycol Confined in Mesoporous Silica for Shape-Stabilized Phase Change Materials[J]. Nano Energy, 2016,19:78-87.  

    14. [14]

      Min X, Fang M H, Huang Z H. Enhanced Thermal Properties of Novel Shape-Stabilized PEG Composite Phase Change Materials with Radial Mesoporous Silica Sphere for Thermal Energy Storage[J]. Sci Rep, 2015,512964.  

    15. [15]

      Zhao Y J, Sun B, Du P P. Hierarchically Channel-Guided Porous Wood-Derived Shape-Stabilized Thermal Regulated Materials with Enhanced Thermal Conductivity for Thermal Energy Storage[J]. Mater Res Express, 2019,6115515.  

    16. [16]

      Yang J, Zhang E W, Li X F. Cellulose/Graphene Aerogel Supported Phase Change Composites with High Thermal Conductivity and Good Shape Stability for Thermal Energy Storage[J]. Carbon, 2016,98:50-57.  

    17. [17]

      Yang J, Tang L S, Bao R Y. Hybrid Network Structure of Boron Nitride and Graphene Oxide in Shape-Stabilized Composite Phase Change Materials with Enhanced Thermal Conductivity and Light-to-Electric Energy Conversion Capability[J]. Sol Energy Mater Sol Cells, 2018,174:56-64.  

    18. [18]

      Bahraseman H G, Languri E M, East J. Fast Charging of Thermal Energy Storage Systems Enabled by Phase Change Materials Mixed with Expanded Graphite[J]. Int J Heat Mass Tran, 2017,109:1052-1058.  

    19. [19]

      Xue F, Jin X Z, Xie X. Constructing Reduced Graphene Oxide/Boron Nitride Frameworks in Melamine Foam Towards Synthesizing Phase Change Materials Applied in Thermal Management of Microelectronic Devices[J]. Nanoscale, 2019,11(40):18691-18701.  

    20. [20]

      MO Zhishen. A Method to Studying the Non-isothermal Crystallization Kinetics of Polymer[J]. Acta Polym Sin, 2008(7):656-667.  

  • 加载中
    1. [1]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    4. [4]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    5. [5]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    6. [6]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    7. [7]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    8. [8]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    9. [9]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    10. [10]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    11. [11]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    12. [12]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    13. [13]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    14. [14]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    15. [15]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    16. [16]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

    17. [17]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    18. [18]

      Yan Xiao Shuling Li Yifan Li Jianing Fan Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025

    19. [19]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    20. [20]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

Metrics
  • PDF Downloads(2)
  • Abstract views(750)
  • HTML views(266)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return