Citation: MIAO Zhongshuo, MEN Yongfeng. Crystallization and Melting Behaviors of Poly(1, 4-cyclohexylene Dimethylene Terephthalate) Studied by Fast-Scan Calorimetry[J]. Chinese Journal of Applied Chemistry, ;2020, 37(6): 642-649. doi: 10.11944/j.issn.1000-0518.2020.06.190359 shu

Crystallization and Melting Behaviors of Poly(1, 4-cyclohexylene Dimethylene Terephthalate) Studied by Fast-Scan Calorimetry

  • Corresponding author: MEN Yongfeng, men@ciac.ac.cn
  • Received Date: 30 December 2019
    Revised Date: 9 February 2020
    Accepted Date: 10 March 2020

    Fund Project: the National Science Fund for Distinguished Young Scholars 51525305Supported by the National Science Fund for Distinguished Young Scholars(No.51525305)

Figures(6)

  • The crystallization and melting behavior of poly(1, 4-cyclohexylene dimethylene terephthalate) (PCT) was studied by fast scanning calorimetry (FSC) combined with traditional differential scanning calorimetry (DSC) in the range of near glass transition temperature and melting temperature (100~270 ℃). The crystallization rate of PCT is faster when the supercooling degree is larger. FSC can effectively inhibit the crystallization of PCT during the cooling process while the traditional DSC can avoid the influence of sample degradation on the experimental results under the lower supercooling degrees. The combination of FSC and DSC can well measure the crystallization kinetics of PCT. The experimental results show that the crystallization rate is the fastest at 175 ℃. FSC is also used to measure the melting point dependence of heating rate after isothermal crystallization, and calibrated on the basis of the modeling of melting kinetics for the determination of the melting point at zero heating rate Tm. The Hoffman-Weeks plot of Tm against Tc with the intersection of Tc=Tm suggested the equilibrium melting point Tmo≅315 ℃ of chain-extended infinite-size crystals of PCT.
  • 加载中
    1. [1]

      Kibler C J, Bell A, Smith J G. Polyesters of 1, 4-Cyclohexanedimethanol[J]. J Polym Sci Part A:Polym Chem, 1964,2(13):2115-2125.

    2. [2]

      Wunderlich B. Crystal Nucleation, Growth, Annealing[J]. Macromol Phys, 1976,2:214-227.  

    3. [3]

      Hoffman J D, Davis G T, Lauritzen J I, et al. The Rate of Crystallization of Linear Polymers with Chain Folding[M]//N.B. Hannay. Treatise on Solid State Chemistry. New York-London, 1976, 3: 497-614.

    4. [4]

      Wunderlich B. Crystal Melting[M]. New York:Macromolecular Physics Academic Press, 1980, 3.

    5. [5]

      Schick C, Mathot V. Fast Scanning Calorimetry[M]. Switzerland:Springer, 2016.

    6. [6]

      Toda A, Androsch R, Schick C. Feature Article:Insights into Polymer Crystallization and Melting from Fast Scanning Chip Calorimetry[J]. Polymer, 2016,91:239-263. doi: 10.1016/j.polymer.2016.03.038

    7. [7]

      Toda A, Taguchi K, Nozaki K. Melting Behaviors of Polyethylene Crystals:An Application of Fast-Scan DSC[J]. Polymer, 2014,55:3186-3194. doi: 10.1016/j.polymer.2014.05.009

    8. [8]

      Toda A, Yamada K, Hikosaka M. Superheating of the Melting Kinetics in Polymer Crystals:A Possible Nucleation Mechanism[J]. Polymer, 2002,43:1667-1679. doi: 10.1016/S0032-3861(01)00733-9

    9. [9]

      Toda A, Taguchi K, Nozaki K. Fast Limiting Behavior of the Melting Kinetics of Polyethylene Crystals Examined by Fast-Scan Calorimetry[J]. Thermochim Acta, 2019,677:211-216. doi: 10.1016/j.tca.2018.12.024

    10. [10]

      Minakov A A, Wurm A, Schick C. Superheating in Linear Polymers Studied by Ultrafast Nanocalorimetry[J]. Eur Phys J E, 2007,23:43-53. doi: 10.1140/epje/i2007-10173-8

    11. [11]

      Toda A. Heating Rate Dependence of Melting Peak Temperature Examined by DSC of Heat Flux Type[J]. J Therm Anal Calorim, 2016,123:1795-1808. doi: 10.1007/s10973-015-4603-3

    12. [12]

      Gradys A, Sajkiewics P, Adamovsky S. Crystallization of Poly(Vinylidene Fluoride) During Ultra-Fast Cooling[J]. Thermochim Acta, 2007,461:153-157. doi: 10.1016/j.tca.2007.05.023

    13. [13]

      Toda A, Konishi M, Schick C. An Evaluation of Thermal Lags of Fast-Scan Microchip DSC with Polymer Film Samples[J]. Thermochim Acta, 2014,589:262-269. doi: 10.1016/j.tca.2014.05.038

    14. [14]

      Lee Y, Porte R S. Double-Melting Behavior of Poly(ether ether ketone)[J]. Macromolecules, 1987,20:1336-1341. doi: 10.1021/ma00172a028

    15. [15]

      Chen H S, Porter R S. Melting Behavior of Poly(Ether Ether Ketone) in Its Blends with Poly(Ether Imide)[J]. J Polym Sci B Polym Phys, 1993,31:1845-1850. doi: 10.1002/polb.1993.090311217

    16. [16]

      Santis F D, Adamovsky S, Schick C. Isothermal Nanocalorimetry of Isotactic Polypropylene[J]. Macromolecules, 2007,40:9026-9031. doi: 10.1021/ma071491b

    17. [17]

      Silvestre C, Cimmino S, Schick C. Isothermal Crystallization of Isotactic Poly(Propylene) Studied by Superfast Calorimetry[J]. Macromol Rapid Commun, 2007,28:875-881. doi: 10.1002/marc.200600844

    18. [18]

      Rhoades A M, Williams J L, Androsch R. Crystallization Kinetics of Polyamide 66 at Processing-Relevant Cooling Conditions and High Supercooling[J]. Thermochim Acta, 2015,603:103-109. doi: 10.1016/j.tca.2014.10.020

    19. [19]

      Toda A, Taguchi K, Sato K. Melting Kinetics of It-Polypropylene Crystals over Wide Heating Rates[J]. J Therm Anal Calorim, 2013,113:1231-1237. doi: 10.1007/s10973-012-2914-1

    20. [20]

      Zhuravlev E, Wunderlich B, Schick C. Kinetics of Nucleation and Crystallization in Poly(ε-Caprolactone)(PCL)[J]. Polymer, 2011,52:1983-1997. doi: 10.1016/j.polymer.2011.03.013

    21. [21]

      Androsch R, Rhoades A M, Schick C. Density of Heterogeneous and Homogeneous Crystal Nuclei in Poly(Butylene Terephthalate)[J]. Eur Polym J, 2015,66:180-189. doi: 10.1016/j.eurpolymj.2015.02.013

    22. [22]

      Konishi T, Sakatsuji W, Fukao K. Temperature Dependence of Lamellar Thickness in Isothermally Crystallized Poly(Butylene Terephthalate)[J]. Macromolecules, 2016,49:2272-2280. doi: 10.1021/acs.macromol.6b00126

    23. [23]

      Furushima Y, Toda A, Androsch R. Two Crystal Populations with Different Melting/Reorganization Kinetics of Isothermally Melt Crystallized Polyamide 6[J]. J Polym Sci B Polym Phys, 2016,54:2126-2138. doi: 10.1002/polb.24123

    24. [24]

      Xu J, Heck B, Reiter G. Stabilization of Nuclei of Lamellar Polymer Crystals:Insights from a Comparison of the Hoffman-Weeks Line with the Crystallization Line[J]. Macromolecules, 2016,49:2206-2215. doi: 10.1021/acs.macromol.5b02123

    25. [25]

      Wang J, Li Z, Hu W B. Comparing Crystallization Rates Between Linear and Cyclic Poly(Epsilon-Caprolactones) via Fast-Scan Chip-Calorimeter Measurements[J]. Polymer, 2015,63:34-40. doi: 10.1016/j.polymer.2015.02.039

    26. [26]

      Minakov A A, Schick C, Martino G. Isothermal Reorganization of Poly(Ethylene Terephthalate) Revealed by Fast Calorimetry[J]. Faraday Discuss, 2005,128:261-270. doi: 10.1039/B403441D

    27. [27]

      Marand H, Xu J, Srinivas S. Determination of the Equilibrium Melting Temperature of Polymer Crystals:Linear and Nonlinear Hoffman-Weeks Extrapolations[J]. Macromolecules, 1998,31:8219-8229. doi: 10.1021/ma980747y

  • 加载中
    1. [1]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    2. [2]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    3. [3]

      Qingcui Yang Wen Liu Li Cao Chen Tang Bing Xu Jie Zhao . For Entropy Hurts: Life Thrives on Negative Entropy. University Chemistry, 2024, 39(9): 151-156. doi: 10.12461/PKU.DXHX202402029

    4. [4]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    5. [5]

      Yan Xiao Shuling Li Yifan Li Jianing Fan Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025

    6. [6]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    7. [7]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    8. [8]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    9. [9]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    10. [10]

      Zhiliang Li . An Overview of Research on the History of Catalysis Science in China. University Chemistry, 2024, 39(7): 398-404. doi: 10.3866/PKU.DXHX202310101

    11. [11]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    12. [12]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    13. [13]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    14. [14]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    15. [15]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    16. [16]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    17. [17]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    18. [18]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    19. [19]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    20. [20]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

Metrics
  • PDF Downloads(3)
  • Abstract views(573)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return