Citation: WANG Yuting, YANG Tianyi, ZHANG Yinghui. Application of Porphyrin-Based Framework Materials on Photocatalysis[J]. Chinese Journal of Applied Chemistry, ;2020, 37(6): 611-619. doi: 10.11944/j.issn.1000-0518.2020.06.190336 shu

Application of Porphyrin-Based Framework Materials on Photocatalysis

  • Corresponding author: ZHANG Yinghui, zhangyhi@nankai.edu.cn
  • Received Date: 16 December 2019
    Revised Date: 11 February 2020
    Accepted Date: 10 March 2020

    Fund Project: Supported by the National Natural Science Foundation of China(No.21531005), and Tianjin Natural Science Foudation(No.19JCZDJC37200)the National Natural Science Foundation of China 21531005Tianjin Natural Science Foudation 19JCZDJC37200

Figures(4)

  • Porphyrins have been widely used to construct new photocatalytic and photosensitizing materials because of their strong absorption of visible light. The photophysical and photochemical properties of porphyrin units could be easily modulated in frameworks materials, with the aid of the large surface area and tunable pore structure of the frameworks, leading to an improved photocatalytic quantum yield and selectivity. In this review, the recent advances of porphyrin-based frameworks materials, including metal organic framework materials (MOFs) and covalent organic framework materials (COFs) as well as covalent organic polymers (COPs) have been briefly summarized in the field of photocatalysis. Moreover, the key problems faced by designing high-performance porphyrin-based photocatalysts were analyzed in order to give some advice for the future development.
  • 加载中
    1. [1]

      LIU Zhixun, LIU Zhenqi, HUANG Wenhui. The Key Countermeasures of Controlling Fossil Fuel Environment Pollution in China[J]. Res Ind, 2005,7(5):53-56. doi: 10.3969/j.issn.1673-2464.2005.05.013

    2. [2]

      Das M C, Xu H, Wang Z. A Zn4O-Containing Doubly Interpenetrated Porous Metal-Organic Framework for Photocatalytic Decomposition of Methyl Orange[J]. Chem Commun, 2011,47(42):11715-11717. doi: 10.1039/c1cc12802g

    3. [3]

      AN Liancai, HAN Jiufang, ZHANG Yinghui. Research and Application Progress on Porous Organic Polymers for Adsorption and Separation of Organic Pollutants in Water System[J]. Chinese J Appl Chem, 2018,35(9):52-58.  

    4. [4]

      Mueller U, Schubert M, Teich F. Metal-Organic Frameworks-Prospective Industrial Applications[J]. J Mater Chem, 2006,16(7):626-636. doi: 10.1039/B511962F

    5. [5]

      Wójcik J, Peszke J, Ratuszna A. Theoretical Investigation of Porphyrin-Based Photosensitizers with Enhanced NIR Absorption[J]. Phys Chem Chem Phys, 2013,15(45):19651-19658. doi: 10.1039/c3cp53143k

    6. [6]

      WANG Pan, LUO Guangfu, CAO Tingting. Properties and Photocatalytic Mechanism of Porphyrin and Metal Porphyrin[J]. J China Three Gorges Univ(Nat Sci), 2011,33(5):84-92.  

    7. [7]

      Luo Y, Li J, Yao G. Influence of Polarity of the Peripheral Substituents of Porphyrin Molecules on the Photocatalytic Activity of Cu(Ⅱ) Porphyrin Modified TiO2 Composites[J]. Catal Sci Technol, 2012,2(4):841-846. doi: 10.1039/c2cy00419d

    8. [8]

      HE Jie, SHEN Jiangjian, LENG Hui. Study on Different Metalloporphyrins for Photocatalytic Degradation of Methylene Blue Solution[J]. Chem Bioeng, 2011,28(5):67-69. doi: 10.3969/j.issn.1672-5425.2011.05.017

    9. [9]

      LI Chuanqiang, LIU Wenmei, HOU Fangbiao. Photocatalytic Degradation of 4-Nitrophenal over Metalloporphyrin with Different Peripheral Ligands[J]. Chem Bioeng, 2016(10):12-17. doi: 10.3969/j.issn.1672-5425.2016.10.003

    10. [10]

      Zhang Z, Zhu Y, Chen X. A Full-Spectrum Metal-Free Porphyrin Supramolecular Photocatalyst for Dual Functions of Highly Efficient Hydrogen and Oxygen Evolution[J]. Adv Mater, 2019,31(7)1806626. doi: 10.1002/adma.201806626

    11. [11]

      Cai J H, Ye Y J, Huang J W. Synthesis, Characterization and Visible-Light Photocatalytic Activity of TiO2-SiO2 Composite Modified with Zinc Porphyrins[J]. J Sol-Gel Sci Technol, 2012,62(3):432-440.  

    12. [12]

      XIONG Xueyao. Research Progress of Porphyrin TiO2Composite Pohotocatalyst[J]. Shanxi Chem Ind, 2016,36(2):54-57.  

    13. [13]

      Jiao L, Wang Y, Jiang H L. Metal-Organic Frameworks as Platforms for Catalytic Applications[J]. Adv Mater, 2018,30(37)1703663. doi: 10.1002/adma.201703663

    14. [14]

      Wu C D, Hu A, Zhang L. A HomochiralPorous Metal-Organic Framework for Highly Enantioselective Heterogeneous Asymmetric Catalysis[J]. J Am Chem Soc, 2005,127(25):8940-8941. doi: 10.1021/ja052431t

    15. [15]

      Liu X T, Wang K, Chang Z. Engineering Donor-Acceptor Heterostructure Crystals for Photonic Logic Computation[J]. Angew Chem Int Ed, 2019,58(39):13890-13896. doi: 10.1002/anie.201906278

    16. [16]

      Cote A P, Benin A I, Ockwig N W. Porous Crystalline Covalent Organic Frameworks[J]. Science, 2005,310(5751):1166-1170. doi: 10.1126/science.1120411

    17. [17]

      Chen R, Shi J L, Ma Y. Designed Synthesis of A 2D Porphyrin-Based sp2 Carbon-Conjugated Covalent Organic Framework for Heterogeneous Photocatalysis[J]. Angew Chem Int Ed, 2019,58(19):6430-6434. doi: 10.1002/anie.201902543

    18. [18]

      Van de Voorde B, Bueken B, Denayer J. Adsorptive Separation on Metal-Organic Frameworks in the Liquid Phase[J]. Chem Soc Rev, 2014,43(16):5766-5788. doi: 10.1039/C4CS00006D

    19. [19]

      Li J R, Kuppler R J, Zhou H C. Selective Gas Adsorption and Separation in Metal-Organic Frameworks[J]. Chem Soc Rev, 2009,38(5):1477-1504. doi: 10.1039/b802426j

    20. [20]

      CHEN Diming. Research Progress of Multi-Scale Porous Metal-Organic Frameworks Materials for Gas Storage and Separation[J]. J Light Ind, 2017,32(5):32-41. doi: 10.3969/j.issn.2096-1553.2017.5.005

    21. [21]

      Long J R, Yaghi O M. The Pervasive Chemistry of Metal-Organic Frameworks[J]. Chem Soc Rev, 2009,38(5):1213-1214. doi: 10.1039/b903811f

    22. [22]

      Cui Y, Li B, He H. Metal Organic Frameworks as Platforms for Functional Materials[J]. Acc Chem Res, 2016,49(3):483-493. doi: 10.1021/acs.accounts.5b00530

    23. [23]

      Lv X L, Wang K, Wang B. A Base-Resistant Metalloporphyrin Metal-Organic Framework for C-H Bond Halogenation[J]. J Am Chem Soc, 2017,139(1):211-217. doi: 10.1021/jacs.6b09463

    24. [24]

      Hamad S, Hernandez N C, Aziz A. Electronic Structure of Porphyrin-Based Metal-Organic Frameworks and Their Suitability for Solar Fuel Production Photocatalysis[J]. J Mater Chem A, 2015,3(46):23458-23465. doi: 10.1039/C5TA06982C

    25. [25]

      Fateeva A, Chater P A, Ireland C P. A Water-Stable Porphyrin-Based Metal-Organic Framework Active for Visible-Light Photocatalysis[J]. Angew Chem Int Ed, 2012,51(30):7440-7444. doi: 10.1002/anie.201202471

    26. [26]

      Wilcox O T, Fateeva A, Katsoulidis A P. Acid Loaded Porphyrin-Based Metal-Organic Framework for Ammonia Uptake[J]. Chem Commun, 2015,51(81):14989-14991.  

    27. [27]

      Liu Y, Yang Y, Sun Q. Chemical Adsorption Enhanced CO2 Capture and Photoreduction over a Copper Porphyrin-Based Metal Organic Framework[J]. ACS Appl Mater Interfaces, 2013,5(15):7654-7658. doi: 10.1021/am4019675

    28. [28]

      Liu J, Fan Y Z, Li X. A Porous Rhodium(Ⅲ)-Porphyrin Metal-Organic Framework as an Efficient and Selective Photocatalyst for CO2 Reduction[J]. Appl Catal B:Environ, 2018,231:173-181. doi: 10.1016/j.apcatb.2018.02.055

    29. [29]

      Johnson J A, Luo J, Zhang X. Porphyrin-Metalation-Mediated Tuning of Photoredox Catalytic Properties in Metal-Organic Frameworks[J]. ACS Catal, 2015,5(9):5283-5291. doi: 10.1021/acscatal.5b00941

    30. [30]

      Johnson J A, Zhang X, Reeson T C. Facile Control of the Charge Density and Photocatalytic Activity of an Anionic Indium Porphyrin Framework via in situ Metalation[J]. J Am Chem Soc, 2014,136(45):15881-15884. doi: 10.1021/ja5092672

    31. [31]

      Aziz A, Ruiz-Salvador A R, Hernández N C. Porphyrin-Based Metal-Organic Frameworks for Solar Fuel Synthesis Photocatalysis:Band Gap Tuning via Iron Substitutions[J]. J Mater Chem A, 2017,5(23):11894-11904. doi: 10.1039/C7TA01278K

    32. [32]

      Sadeghi N, Sharifnia S, Do T O. Optimization and Modeling of CO2 Photoconversion Using a Response Surface Methodology with Porphyrin-Based Metal Organic Framework[J]. React Kinet, Mech Catal, 2018,125(1):411-431. doi: 10.1007/s11144-018-1407-z

    33. [33]

      Deenadayalan M S, Sharma N, Verma P K. Visible-Light-Assisted Photocatalytic Reduction of Nitroaromatics by Recyclable Ni(Ⅱ)-Porphyrin Metal Organic Framework(MOF) at RT[J]. Inorg Chem, 2016,55(11):5320-5327. doi: 10.1021/acs.inorgchem.6b00296

    34. [34]

      Sharma N, Dhankhar S S, Nagaraja C M. A Mn(Ⅱ)-Porphyrin Based Metal-Organic Framework(MOF) for Visible-Light-Assisted Cycloaddition of Carbon Dioxide with Epoxides[J]. Micropor Mesopor Mater, 2019,280:372-378. doi: 10.1016/j.micromeso.2019.02.026

    35. [35]

      Sadeghi N, Sharifnia S, Arabi M S. A Porphyrin-Based Metal Organic Framework for High Rate Photoreduction of CO2 to CH4 in Gas Phase[J]. J CO2 Util, 2016,16:450-457. doi: 10.1016/j.jcou.2016.10.006

    36. [36]

      Ye L, Gao Y, Cao S. Assembly of Highly Efficient Photocatalytic CO2 Conversion Systems with Ultrathin Two-Dimensional Metal Organic Framework Nanosheets[J]. Appl Catal B:Environ, 2018,227:54-60. doi: 10.1016/j.apcatb.2018.01.028

    37. [37]

      Yuan S, Liu T F, Feng D. A Single Crystalline Porphyrinic Titanium Metal-Organic Framework[J]. Chem Sci, 2015,6(7):3926-3930. doi: 10.1039/C5SC00916B

    38. [38]

      Wang X, Zhang X, Zhou W. An Ultrathin Porphyrin-Based Metal-Organic Framework for Efficient Photocatalytic Hydrogen Evolution under Visible Light[J]. Nano Energy, 2019,62:250-258. doi: 10.1016/j.nanoen.2019.05.023

    39. [39]

      Sadeghi N, Sharifnia S, Do T O. Enhanced CO2 Photoreduction by a Graphene-Porphyrin Metal-Organic Framework under Visible Light Irradiation[J]. J Mater Chem A, 2018,6(37):18031-18035. doi: 10.1039/C8TA07158F

    40. [40]

      Feng D, Gu Z Y, Li J R. Zirconium-Metalloporphyrin PCN-222:Mesoporous Metal-Organic Frameworks with Ultrahigh Stability as Biomimetic Catalysts[J]. Angew Chem Int Ed, 2012,51(41):10307-10310. doi: 10.1002/anie.201204475

    41. [41]

      Sasan K, Lin Q, Mao C Y. Incorporation of Iron Hydrogenase Active Sites into a Highly Stable Metal-Organic Framework for Photocatalytic Hydrogen Generation[J]. Chem Commun, 2014,50(72):10390-10393. doi: 10.1039/C4CC03946G

    42. [42]

      Zhao Y, Dong Y, Lu F. Coordinative Integration of a Metal-PorphyrinicFramework and TiO2 Nanoparticles for the Formation of Composite Photocatalysts with Enhanced Visible-Light-Driven Photocatalytic Activities[J]. J Mater Chem A, 2017,5(29):15380-15389. doi: 10.1039/C7TA03840B

    43. [43]

      Chen L, Wang Y, Yu F. A Simple Strategy for Engineering Heterostructures of Au Nanoparticle-Loaded Metal-Organic Framework Nanosheets to Achieve Plasmon-Enhanced Photocatalytic CO2 Conversion under Visible Light[J]. J Mater Chem A, 2019,7(18):11355-11361. doi: 10.1039/C9TA01840A

    44. [44]

      Feng X, Liu L, Honsho Y. High-Rate Charge-Carrier Transport in Porphyrin Covalent Organic Frameworks:Switching from Hole to Electron to Ambipolar Conduction[J]. Angew Chem Int Ed, 2012,51(11):2618-2622. doi: 10.1002/anie.201106203

    45. [45]

      Liu W, Li X, Wang C. A Scalable General Synthetic Approach Towards Ultrathin Imine-Linked Two-Dimensional Covalent Organic Framework Nanosheets for Photocatalytic CO2 Reduction[J]. J Am Chem Soc, 2019,141(43):17431-17440. doi: 10.1021/jacs.9b09502

    46. [46]

      Lu M, Liu J, Li Q. Rational Design of Crystalline Covalent Organic Frameworks for Efficient CO2 Photoreduction with H2O[J]. Angew Chem, 2019,58(36):12393-12397.  

    47. [47]

      Hou Y, Cui C X, Zhang E. A Hybrid of g-C3N4 and Porphyrin-Based Covalent Organic Frameworks via Liquid-Assisted Grinding for Enhanced Visible-Light-Driven Photoactivity[J]. Dalton Trans, 2019,48(40):14989-14995. doi: 10.1039/C9DT03307F

    48. [48]

      Yang W, Li B, Wang H. A Microporous Porphyrin-Based Hydrogen-Bonded Organic Framework for Gas Separation[J]. Cryst Growth Des, 2015,15(4):2000-2004. doi: 10.1021/acs.cgd.5b00147

    49. [49]

      Yin Q, L J, Li H F. A Robust Microporous Porphyrin-based Hydrogen-Bonded Organic Framework for Highly Selective Separation of C2 Hydrocarbons Versus Methane[J]. Cryst Growth Des, 2019,19(7):4157-4161. doi: 10.1021/acs.cgd.9b00628

    50. [50]

      Luo Y H, He X T, Hong D L. A Dynamic 3D Hydrogen-Bonded Organic Frameworks with Highly Water Affinity[J]. Adv Funct Mater, 2018,28(48)1804822. doi: 10.1002/adfm.201804822

    51. [51]

      Zhang Z, Li J, Yao Y. Permanently Porous Co(Ⅱ) Porphyrin-Based Hydrogen Bonded Framework for Gas Adsorption and Catalysis[J]. Cryst Growth Des, 2015,15(10):5028-5033. doi: 10.1021/acs.cgd.5b00987

    52. [52]

      Wang B, Xie Z, Li Y. Dual-Functional Conjugated NanoporousPolymres for Efficient Organic Pollutants Treatment in Water:A Synergistic Strategy of Adsorption and Photocatalysis[J]. Macromolecules, 2018,51(9):3443-3449. doi: 10.1021/acs.macromol.8b00669

    53. [53]

      Zhang H J, Wang J H, Zhang Y H. Hollow Porous Organic Polymer:High-Performance Adsorption for Organic Dye in Aqueous Solution[J]. J Polym Sci A-Polym Chem, 2017,55(8):1329-1337. doi: 10.1002/pola.28500

    54. [54]

      Mukherjee G, Thote J, Aiyappa H B. A Porous Porphyrin Organic Polymer(PPOP) for Visible Light Triggered Hydrogen Production[J]. Chem Commun, 2017,53(32):4461-4464. doi: 10.1039/C7CC00879A

    55. [55]

      Chen Z, Wang J, Zhang S. Porphyrin-Based Conjugated Polymers as Intrinsic Semiconducting Photocatalysts for Robust H2 Generation under Visible Light[J]. ACS Appl Energy Mater, 2019,2(8):5665-5676. doi: 10.1021/acsaem.9b00811

    56. [56]

      Zhang Z, Zhu Y, Chen X. A Full-Spectrum Metal-Free Porphyrin Supramolecular Photocatalyst for Dual Functions of Highly Efficient Hydrogen and Oxygen Evolution[J]. Adv Mater, 2019,31(7)1806626. doi: 10.1002/adma.201806626

    57. [57]

      Wang N, Cheng G, Guo L. Hollow Covalent Triazine Frameworks with Variable Shell Thickness and Morphology[J]. Adv Funct Mater, 2019,29(43)1904781. doi: 10.1002/adfm.201904781

  • 加载中
    1. [1]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    2. [2]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    3. [3]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    4. [4]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    5. [5]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    6. [6]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    7. [7]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    11. [11]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    12. [12]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    13. [13]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    14. [14]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    18. [18]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    19. [19]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    20. [20]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

Metrics
  • PDF Downloads(21)
  • Abstract views(1408)
  • HTML views(437)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return