Citation: HAN Ping, FENG Haitao, LI Ling, DONG Yaping, TIAN Sen, ZHANG Bo, LI Bo, LI Wu. Electrochemical Oxidation of High Carbon Ferrochrome in Sodium Hydroxide Aqueous Solution[J]. Chinese Journal of Applied Chemistry, ;2020, 37(6): 709-718. doi: 10.11944/j.issn.1000-0518.2020.06.190333 shu

Electrochemical Oxidation of High Carbon Ferrochrome in Sodium Hydroxide Aqueous Solution

  • Corresponding author: FENG Haitao, fenght@isl.ac.cn
  • Received Date: 13 December 2019
    Revised Date: 26 February 2020
    Accepted Date: 26 March 2020

    Fund Project: the Basic Research Project in Qinghai Province 2017-ZJ-786the Major Science and Technology Project in Qinghai Province 2016-GX-A10Supported by the Basic Research Project in Qinghai Province(No.2017-ZJ-786), and the Major Science and Technology Project in Qinghai Province(No.2016-GX-A10)

Figures(8)

  • Although ferrochrome electrolysis technology is a novel method for preparing sodium chromate, the electrochemical oxidation of high carbon ferrochrome in NaOH aqueous solution is still unclear. The electrochemical oxidation of chromium in NaOH aqueous solution was studied by cyclic voltammetry(CV). The electrochemical oxidation of high carbon ferrochrome in NaOH aqueous solution was studied by cyclic voltammetry and linear sweep voltammetry (LSV). Scanning electron microscope (SEM), energy dispersive spectrometry (EDS) and X-ray photoelectron spectroscopy (XPS) were used to characterize the composition of solid phase products after electrolysis of high carbon ferrochrome electrode. The results are as follows:metal chromium has two ways of electrochemical oxidation to form sodium chromate in NaOH aqueous solution: Cr(0)→Cr(Ⅵ) and Cr(0)→Cr(Ⅲ)→Cr(Ⅵ). The electrochemical oxidation of high carbon ferrochrome in NaOH is different from the metal chromium. It directly generates sodium chromite by Cr(0). Cr(OH)3 occurs electrochemical reaction with Fe(0) to form stable FeCr2O4. Fe(OH)3 is formed by the strong hydrolysis of FeO2-. As the concentration of NaOH aqueous solutions increases, the high carbon ferrochrome is easily passivated in NaOH aqueous solution under low potential range due to the influence of Fe(0). The passive films are Fe3O4 and Fe2O3. The passivation films dissolve at high potential. Then high carbon ferrochrome occurs electrochemical reaction to form Na2CrO4, Fe(OH)3 and FeCr2O4. At the same time, a large amount of oxygen is deposited on the positive electrode surface. As the concentration of NaOH aqueous solutions increases, the amount of Na2CrO4 and Fe(OH)3 increases. The conditions are as follows: alkaline concentration ≥2 mol/L, anodic potential ≥1.6 V(vs.SCE).
  • 加载中
    1. [1]

      DING Yi, JI Zhu. Production and Application of Chromium Compounds[M]. Beijing:Chemical Industry Press, 2002:4-8(in Chinese).

    2. [2]

      GAO Huanfang, LI Yaling, WANG Dong. Effect and Morphology of Chromium Contaminated Soil Treated with Sodium Thiosulfate[J]. Ind Saf Environ Prot, 2019,45(9):81-83, 87.  

    3. [3]

      FENG Haitao, LIANG Jian, ZHENG Zhulin, et al. Device and Method for Preparing Sodium Application of Electrochemistry Solution by Electrolytic Method: CN, 201310672022.8[P]. 2016-08-24(in Chinese).

    4. [4]

      FENG Haitao, LI Bo, DONG Yaping, et al. Method for Preparing Potassium Chromate Solution by Electrolytic Method: CN, 201310674678.3[P]. 2015-11-18(in Chinese).

    5. [5]

      Armstrong R D, Henderson M. Transpassive Dissolution of Chromium[J]. J Electroanal Chem, 1971,32(1):1-11.

    6. [6]

      Agrawal A K, Sheth K G, Poteet K. The Polarization Behavior of Fe-Ni-Cr Alloys in Concentrated Sodium Hydroxide Solutions in the Temperature Range 25℃ to 150℃[J]. J Electrochem Soc, 1972,119(12):1637-1644.  

    7. [7]

      Knoedler R, Heusler K E. Mechanism of Oxidation of Chromium to Chromate[J]. Electrochim Acta, 1972,17(2):197-212.  

    8. [8]

      ZHANG Bo. Electrochemical Oxidation and Reduction of Chromium in Aqueous Solution & Preparation of Chromium Materials[D]. Xining: Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 2017(in Chinese). 

    9. [9]

      JIA Zheng, DAI Changsong, CHEN Ling. Electrochemical Measurement Methods[M]. Beijing:Chemical Industry Press, 2006:144-146(in Chinese).

    10. [10]

      Szep I C. Chemical Processing of Thin Chromium Films[J]. Thin Solid Films, 1991,205(1):101-105.  

    11. [11]

      ZHA Quanxing, LU Juntao, LUO Daoming, et al. Introductory of Electrode Kinetics(CENDL-2)[M]. Beijing:Science Press, 1987:325(in Chinese).

    12. [12]

      Castle J E, Qiu J H. A Co-ordinated Study of the Passivation of Alloy Steels by Plasma Source Mass Spectrometry and X-Ray Photoelectron Spectroscopy-Ⅰ.Characterization of the Passive Film[J]. Corros Sci, 1989,29(5):591-603.

    13. [13]

      Davenport A J, Ryan M P, Simmonds M C. In Situ Synchrotron X-Ray Microprobe Studies of Passivation Thresholds in Fe-Cr Alloys[J]. J Electrochem Soc, 2001,148(6):B217-B221.  

    14. [14]

      El-Basiouny M S, Haruyama S. The Polarization Behaviour of Fe-Cr Alloys in Acidic Sulphate Solutions in the Active Region[J]. Corros Sci, 1976,16(8):529-540.

    15. [15]

      WEI Baoming. Metals Corrosion Theory and Application[M]. Beijing:Chemical Industry Press, 1996:2(in Chinese).

    16. [16]

      Schmuki P. From Bacon to Barriers:A Review on the Passivity of Metals and Alloys[J]. Solid State Electrochem, 2002,6(3):145-164.  

    17. [17]

      Beck T R. Formation of Salt Films During Passivation of Iron[J]. J Electrochem Soc, 1982,129(11):2412-2418.  

    18. [18]

      Öiefors L. Self-Discharge of the Alkaline Iron Electrode[J]. Electrochim Acta, 1976,21(4):263-266.  

    19. [19]

      Frankel G S. Pitting Corrosion of Metals:A Review of the Critical Factors[J]. J Electrochem Soc, 1998,145(6):2186-2198.  

    20. [20]

      Wuhan University, Jilin University, etc. Inorganic Chemistry for Part 2(CENDL-2)[M]. Beijing:Higher Education Press, 1994:988(in Chinese).

    21. [21]

      Liu M L, Aiello A, Xie Y S. The Effect of Short-Range Order on Passivation of Fe-Cr Alloys[J]. J Electrochem Soc, 2018,165(11):C830-C834.  

    22. [22]

      Oku M, Hirokawa K. X-Ray Photoelectron Spectroscopy of Co3O4, Fe3O4, Mn3O4, and Related Compounds[J]. J Electron Spectrosc Relat Phenom, 1976,8(5):475-481.

    23. [23]

      Tan B J, Klabunde K J, Sherwood P M A. X-ray Photoelectron Spectroscopy Studies of Solvated Metal Atom Dispersed Catalysts. Monometallic Iron and Bimetallic Iron-Cobalt Particles on Alumina[J]. Chem Mater, 1990,2(2):186-191.  

    24. [24]

      Aronniemi M, Sainio J, Lahtinen J. Chemical State Quantification of Iron and Chromium Oxides Using XPS:The Effect of the Background Subtraction Method[J]. Surf Sci, 2005,578(1/3):108-123.  

    25. [25]

      Daas H, Passacantando M, Lozzi L. The Interaction of Cu(100) Fe Surfaces with Oxygen Studied by X-Ray Photoelectron Spectroscopy[J]. Surf Sci, 1994,317(3):295-302.  

  • 加载中
    1. [1]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    2. [2]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    3. [3]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    4. [4]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    5. [5]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    6. [6]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    7. [7]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    8. [8]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    9. [9]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    10. [10]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    11. [11]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    12. [12]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    13. [13]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    14. [14]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    15. [15]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    16. [16]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    17. [17]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    18. [18]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    19. [19]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    20. [20]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

Metrics
  • PDF Downloads(5)
  • Abstract views(856)
  • HTML views(248)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return