Citation: GAO Limin, LI Lu, ZHOU Guangyuan, WANG Honghua, ZHU Zhongli. Preparation and Properties of Siliceous Earth/ Phenolphthalein-Based Poly(arylene ether sulfone) Composites[J]. Chinese Journal of Applied Chemistry, ;2020, 37(5): 524-530. doi: 10.11944/j.issn.1000-0518.2020.05.190346 shu

Preparation and Properties of Siliceous Earth/ Phenolphthalein-Based Poly(arylene ether sulfone) Composites

  • Corresponding author: ZHU Zhongli, zzlcclg@126.com
  • Received Date: 19 December 2019
    Revised Date: 8 February 2020
    Accepted Date: 21 February 2020

    Fund Project: the Key R & D Program of Guangdong Province 2018B090906001Supported by the Key R&D Program of Guangdong Province(No.2018B090906001)

Figures(6)

  • Functional modification of siliceous earth with γ-aminopropyltriethoxysilane, and functionalized siliceous earth was blended into phenolphthalein-based poly(arylene ether sulfone) (PES-C) to prepare composite materials. And its thermal properties, mechanical properties and barrier properties were characterized and analyzed. The results showed that the surface modification of γ-aminopropyltriethoxy increased the layers' pacing of siliceous earth and made the siliceous earth in the state of semi-stripping, and the doping of the surface modified siliceous earth into PES-C through solution blending was more conducive to the insertion of PES-C molecular chains. The 5% mass loss temperature (T-5%), the T-10% and the Tmax of the composites was increased by 10.2 ℃, 10 ℃ and 3.9 ℃, respectively. In addition, the tensile strength of the composite materials increased by 8.4 MPa, the breaking elongation increased by 2.4%, and the modulus increased by 560.7 MPa. The PO2 of composites was reduced by 77.4%.
  • 加载中
    1. [1]

      Shang Y, Zhao Y, Liu Y. The Effect of Micron-Graphite Particle Size on the Mechanical and Tribological Properties of Peek Composites[J]. High Perform Polym, 2018,30(2):153-160. doi: 10.1177/0954008316685410

    2. [2]

      Papageorgiou D G, Liu M, Li Z. Hybrid Poly(Ether Ether Ketone) Composites Reinforced with a Combination of Carbon Fibres and Graphene Nanoplatelets[J]. Compos Sci Technol, 2019,175:60-68. doi: 10.1016/j.compscitech.2019.03.006

    3. [3]

      Han S, Meng Q, Qiu Z. Mechanical, Toughness and Thermal Properties of 2D Material-Reinforced Epoxy Composites[J]. Polymer, 2019,184121884. doi: 10.1016/j.polymer.2019.121884

    4. [4]

      Ajorloo M, Fasihi M, Ohshima M. How are the Thermal Properties of Polypropylene/Graphene Nanoplatelet Composites Affected by Polymer Chain Configuration and Size of Nanofiller?[J]. Mater Des, 2019,181.

    5. [5]

      Xue G, Zhang B, Xing J. A Facile Approach to Synthesize in Situ Functionalized Graphene Oxide/Epoxy Resin Nanocomposites:Mechanical and Thermal Properties[J]. J Mater Sci, 2019,54(22):13973-13989. doi: 10.1007/s10853-019-03901-1

    6. [6]

      Qiu Y, Ma X. Crystallization, Mechanical and UV Protection Properties of Graphene Oxide/Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) Biocomposites[J]. J Mater Sci, 2019,54(23):14388-14399. doi: 10.1007/s10853-019-03951-5

    7. [7]

      Du W, Jin Y, Lai S. Urethane-Silica Functionalized Graphene Oxide for Enhancing Mechanical Property and Fire Safety of Waterborne Polyurethane Composites[J]. Appl Surf Sci, 2019,492:298-308. doi: 10.1016/j.apsusc.2019.06.227

    8. [8]

      Ramezanzadeh B, Niroumandrad S, Ahmadi A. Enhancement of Barrier and Corrosion Protection Performance of an Epoxy Coating Through Wet Transfer of Amino Functionalized Graphene Oxide[J]. Corros Sci, 2016,103:283-304. doi: 10.1016/j.corsci.2015.11.033

    9. [9]

      Jiang F, Zhao W, Wu Y. Anti-Corrosion Behaviors of Epoxy Composite Coatings Enhanced via Graphene Oxide with Different Aspect Ratios[J]. Prog Org Coat, 2019,127:70-79. doi: 10.1016/j.porgcoat.2018.11.008

    10. [10]

      Wang N, Fu W, Zhang J. Corrosion Performance of Waterborne Epoxy Coatings Containing Polyethylenimine Treated Mesoporous-TiO2 Nanoparticles on Mild Steel[J]. Prog Org Coat, 2015,89:114-122. doi: 10.1016/j.porgcoat.2015.07.009

    11. [11]

      Kim H, Miura Y, Macosko C W. Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity[J]. Chem Mater, 2010,22(11):3441-3450. doi: 10.1021/cm100477v

    12. [12]

      Cui Y, Kundalwal S I, Kumar S. Gas Barrier Performance of Graphene/Polymer Nanocomposites[J]. Carbon, 2016,98:313-333. doi: 10.1016/j.carbon.2015.11.018

    13. [13]

      Kango S, Kalia S, Celli A. Surface Modification of Inorganic Nanoparticles for Development of Organic-Inorganic Nanocomposites-A Review[J]. Prog Polym Sci, 2013,38(8):1232-1261. doi: 10.1016/j.progpolymsci.2013.02.003

    14. [14]

      FAN Chaojun. Preoaration and Properties of Phenolphthalein-based Poly(arylene ether sulfone) Composites[D]. Wuhan: Wuhan Institute of Technology, 2016(in Chinese). 

    15. [15]

      Huang A, Wang H, Ellingham T. An Improved Technique for Dispersion of Natural Graphite Particles in Thermoplastic Polyurethane by Sub-critical Gas-Assisted Processing[J]. Compos Sci Technol, 2019,182107783. doi: 10.1016/j.compscitech.2019.107783

    16. [16]

      Zhao H, Zhao G, Turng L S. Enhancing Nanofiller Dispersion through Prefoaming and Its Effect on the Microstructure of Microcellular Injection Molded Polylactic Acid/Clay Nanocomposites[J]. Ind Eng Chem Res, 2015,54(28):7122-7130. doi: 10.1021/acs.iecr.5b01130

    17. [17]

      Milani M A, Gonz lez D, Quijada R. Polypropylene/Graphene Nanosheet Nanocomposites by in Situ Polymerization:Synthesis, Characterization and Fundamental Properties[J]. Compos Sci Technol, 2013,84:1-7. doi: 10.1016/j.compscitech.2013.05.001

    18. [18]

      FENG Xiaming. Preparation of Two-Dimensional Molybdenum Disulfide/Polymer Nanocomposites and Investigation on Their Mechanical, Thermal and Combustion Properties[D]. Hefei: University of Science and Technology of China, 2017(in Chinese).

    19. [19]

      Ren F, Tan W, Duan Q. Ultra-Low Gas Permeable Cellulose Nano Fi Ber Nanocomposite Films Filled with Highly Oriented Graphene Oxide Nanosheets Induced by Shear Field[J]. Carbohydr Polym, 2019,209:310-319. doi: 10.1016/j.carbpol.2019.01.040

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    6. [6]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    7. [7]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    8. [8]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    9. [9]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    10. [10]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    11. [11]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    12. [12]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    13. [13]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    14. [14]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    15. [15]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    16. [16]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    17. [17]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    18. [18]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    19. [19]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    20. [20]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

Metrics
  • PDF Downloads(4)
  • Abstract views(489)
  • HTML views(103)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return