Citation: ZHANG Xiaobo, XIN Haiying, XU Shuang, ZHANG Xinghai, WANG Liqiu. Cellulose Gel Polymer Electrolytes and Its Application in Supercapacitors[J]. Chinese Journal of Applied Chemistry, ;2020, 37(5): 547-554. doi: 10.11944/j.issn.1000-0518.2020.05.190327 shu

Cellulose Gel Polymer Electrolytes and Its Application in Supercapacitors

  • Corresponding author: ZHANG Xinghai, xinghaizhang@tom.com WANG Liqiu, liqiuwang@tom.com
  • Received Date: 1 December 2019
    Revised Date: 16 January 2020
    Accepted Date: 19 February 2020

    Fund Project: Supported by Hebei Natural Science Foundation(No.B2019203500), the Open Fund of Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education(2018) and Hebei Social Science Foundation(No.HB18TY020)the Open Fund of Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education 2018Hebei Social Science Foundation HB18TY020Hebei Natural Science Foundation B2019203500

Figures(7)

  • A cellulose gel electrolyte (XWD-NaOH) was obtained through static hydration and crosslinking of cellulose pulp viscose solution, followed by introducing potassium ferrocyanide into XWD-NaOH to give a gel electrolyte (XWD-NaOH-K4[Fe(CN)6]). XWD-NaOH-K4[Fe(CN)6] has excellent redox activity and ionic conductivity (15.3 mS/cm). At 0.5 A/g current density, XWD-NaOH-K4[Fe(CN)6] electrolyte supercapacitor exhibits an increase of the electrode specific capacitance, power density and energy density by 57%, 111% and 214% compared to those of XWD-NaOH system. The XWD-NaOH-K4[Fe(CN)6] system has low internal resistance, charge transfer resistance and high cycle stability
  • 加载中
    1. [1]

      Choudhury N A, Sampath S, Shukla A K. Hydrogel-Polymer Electrolytes for Electrochemical Capacitors:An Overview[J]. Energy Environ Sci, 2009,2(1):55-67. doi: 10.1039/B811217G

    2. [2]

      HU Dan, LIU Qiao, CHEN Zhongyi. Polymer Hydrogel Based Materials for Supercapacitors[J]. Chem Bull, 2018,81(6):483-492.  

    3. [3]

      Wang W Q, Yang C Y, An Z X. Rational Design of Modified Fluororubber-Based Quasi-Solid-State Electrolyte for Flexible Supercapacitors with Enhanced Performance[J]. Chem Eng J, 2019,378122244. doi: 10.1016/j.cej.2019.122244

    4. [4]

      Peng S J, Jiang X Z, Xiang X T. High-Performance and Flexible Solid-State Supercapacitors Based on High Toughness and Thermoplastic Poly(Vinyl Alcohol)/NaCl/Glycerol Supramolecular Gel Polymer Electrolyte[J]. Electrochim Acta, 2019,324(20)134874.  

    5. [5]

      Xun Z Y, Ni S P, Gao Z H. Construction of Polymer Electrolyte Based on Soybean Protein Isolate and Hydroxyethyl Cellulose for a Flexible Solid-State Supercapacitor[J]. Polymers, 2019,11(1/2):131-139.  

    6. [6]

      CHEN Bin, LÜ Yanbo, CHEN Kewei. Research Progress of Solid-state Supercapacitors Electrolytes and Its Classifications[J]. High Voltage Eng, 2019,45(3):929-939.  

    7. [7]

      Lee D, Song Y H, Choi U H. Highly Flexible and Stable Solid-State Supercapacitors Based on a Homogeneous Thin Ion Gel Polymer Electrolyte Using a Poly(dimethylsiloxane) Stamp[J]. ACS Appl Mater Interfaces, 2019,11(45):42221-42232. doi: 10.1021/acsami.9b14990

    8. [8]

      Sun K J, Ran F T, Zhao G H. High Energy Density of Quasi-Solid-State Supercapacitor Based on Redox-Mediated Gel Polymer Electrolyte[J]. RSC Adv, 2016,6(60):55225-55232. doi: 10.1039/C6RA06797B

    9. [9]

      Torben D, Yu U, Noel W, et al. Duffy. Aqueous Dye-Sensitized Solar Cell Electrolytes Based on the Ferricyanide Ferrocyanide Redox Couple[J]. Adv Mater, 2012, 24(9): 1222-1225. 

    10. [10]

      Palanisamy R K, Harivignesh R, Danielle M. Preparation of Starch-Based Porous Carbon Electrode and Biopolymer Electrolyte for All Solid-State Electric Double Layer Capacitor[J]. J Colloid Interface Sci, 2019,544(15):142-156.  

    11. [11]

      Shen J W, Wang Q G, Zhang K. Flexible Carbon Cloth Based Solid-State Supercapacitor from Hierarchical Holothurian-Morphological NiCo2O4@NiMoO4/PANI[J]. Electrochim Acta, 2019,320134578. doi: 10.1016/j.electacta.2019.134578

    12. [12]

      Wu J H, Lan Z, Wang D B. Gel Polymer Electrolyte Based on Poly(Acrylonitrile-co-Styrene) and a Novel Organic Iodide Salt for Quasi-Solid State Dye-Sensitized Solar Cell[J]. Electrochim Acta, 2006,51(20):4243-4249. doi: 10.1016/j.electacta.2005.11.047

    13. [13]

      Yin B, Zhang S, Ke K. Advanced Deformable All-in-One Hydrogel Supercapacitor Based on Conducting Polymer:Toward Integrated Mechanical and Capacitive Performance[J]. J Alloy Compd, 2019,805:1044-1051. doi: 10.1016/j.jallcom.2019.07.144

    14. [14]

      Na R Q, Liu Y D, Lu N. Mechanically Robust Hydrophobic Association Hydrogel Electrolyte with Efficient Ionic Transport for Flexible Supercapacitors[J]. Chem Eng J, 2019,374:738-747. doi: 10.1016/j.cej.2019.06.004

    15. [15]

      Suh E H, Jung Y S, Jong W B. Faradaic Reaction of Dual-Redox Additive in Zwitterionic Gel Electrolyte Boosts the Performance of Flexible Supercapacitors[J]. Electrochim Acta, 2019,319:672-681. doi: 10.1016/j.electacta.2019.07.043

  • 加载中
    1. [1]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    2. [2]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    3. [3]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    4. [4]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    5. [5]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    6. [6]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    7. [7]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    8. [8]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    9. [9]

      Feng Lin Zhongxin Jin Caiying Li Cheng Shao Yang Xu Fangze Li Siqi Liu Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017

    10. [10]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    11. [11]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    12. [12]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    13. [13]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    14. [14]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    15. [15]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    16. [16]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    17. [17]

      Hongren RONGGexiang GAOZhiwei LIUKe ZHOULixin SUHao HUANGWenlong LIUQi LIU . High-performance supercapacitor based on 1D cobalt-based coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1183-1195. doi: 10.11862/CJIC.20250034

    18. [18]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    19. [19]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    20. [20]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

Metrics
  • PDF Downloads(2)
  • Abstract views(726)
  • HTML views(156)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return