Citation: LIU Xue, MA Hua, XU Heng, JI Haicong, WANG Dong. Lithium Storage Properties of Non-woven Fabric Based Polypyrrole Flexible Electrodes[J]. Chinese Journal of Applied Chemistry, ;2020, 37(5): 555-561. doi: 10.11944/j.issn.1000-0518.2020.05.190304 shu

Lithium Storage Properties of Non-woven Fabric Based Polypyrrole Flexible Electrodes

  • Corresponding author: WANG Dong, wangdon08@126.com
  • Received Date: 14 November 2019
    Revised Date: 3 January 2020
    Accepted Date: 20 February 2020

    Fund Project: the National Natural Science Foundation of China 51873166Supported by the National Natural Science Foundation of China(No.51873166)

Figures(6)

  • Flexible lithium-ion batteries with high-performance play a significant role in the development of wearable electronics. Pyrrole was polymerized in situ on polyethylene terephthalate (PET) non-woven fabric substrate through chemical oxidation method. By controlling the reaction conditions, PET-based polypyrrole(PPy) flexible electrode (PPy/PET) with different morphologies can be obtained. When the shearing force is low, the morphology of resulting PPy was nanowires (NW), vice versa, nanoparticles (NP). The mean diameter of PPy-NW is 460 nm. PET is covered with the interconnected PPy-NW, forming three-dimensional netlike conducting pathways. The as-prepared samples are directly used as binder-free flexible electrodes. The results of electrochemical tests demonstrate that PPy-NW/PET is favorable for enhancing lithium storage performance. It delivers an initial discharge and charge capacity of 124 and 98 mA·h/g with superior flexibility and stability. This paper offers a strategy for the fabrication of flexible and lightweight electrode materials and their application in energy storage.
  • 加载中
    1. [1]

      Chen D, Lou Z, Jiang K. Device Configurations and Future Prospects of Flexible/Stretchable Lithium-Ion Batteries[J]. Adv Funct Mater, 2018,28(51)1805596. doi: 10.1002/adfm.201805596

    2. [2]

      Cha H, Lee Y, Kim J. Flexible 3D Interlocking Lithium-Ion Batteries[J]. Adv Energy Mater, 2018,8(30)1801917. doi: 10.1002/aenm.201801917

    3. [3]

      Qian G, Zhu B, Liao X. Bioinspired, Spine-Like, Flexible, Rechargeable Lithium-Ion Batteries with High Energy Density[J]. Adv Mater, 2018,31(12)1704947.  

    4. [4]

      Ji D, Fan L, Li L. Atomically Transition Metals on Self-Supported Porous Carbon Flake Arrays as Binder-Free Air Cathode for Wearable Zinc-Air Batteries[J]. Adv Mater, 2019,31(16)1808267. doi: 10.1002/adma.201808267

    5. [5]

      XU Yuzhong, DONG Yongfen, TAN Licheng. Block Copolymer Electrolytes for Lithium Batteries[J]. Chinese J Appl Chem, 2017,34(3):245-261.  

    6. [6]

      Zhou G M, Li F, Cheng H. Progress in Flexible Lithium Batteries and Future Prospects[J]. Energy Environ Sci, 2014,7(4):1307-1338. doi: 10.1039/C3EE43182G

    7. [7]

      ZHANG Kai, BAI Hongmei, CHENG Fangyi. Preparation of Sn Films by Vacuum Evaporation and Their Electrochemical Properties as Lithium-Storage Materials[J]. Chinese J Appl Chem, 2011,28(8):918-923.  

    8. [8]

      YAN Bing, XIONG Wenxu, ZHENG Shibing. Single-Walled Carbon Nanotubes Enhanced Electrochemical Performance of High-Capacity Organic Cathode Composites Calix [4] quinone/Mesporous Carbon CMK-3 for Li-Ion Batteries[J]. Chinese J Appl Chem, 2019,36(5):554-563.  

    9. [9]

      Wang T, Shi S J, Li Y. Study of Microstructure Change of Carbon Nanofibers as Binder-Free Anode for High-Performance Lithium-Ion Batteries[J]. ACS Appl Mater Interfaces, 2016,8(48):33091-33101. doi: 10.1021/acsami.6b11996

    10. [10]

      Chao D, Zhu C, Xia X. Graphene Quantum Dots Coated VO2 Arrays for Highly Durable Electrodes for Li and Na Ion Batteries[J]. Nano Lett, 2015,15(1):565-573. doi: 10.1021/nl504038s

    11. [11]

      Wang W, Xu Q, Liu H. A Flexible Symmetric Sodium Full Cell Constructed Using the Bipolar Material Na3V2(PO4)3[J]. J Mater Chem A, 2017,5(18):8440-8450. doi: 10.1039/C7TA01477E

    12. [12]

      Ding Y L, Wu C, Kopold P. Graphene-Protected 3D Sb-Based Anodes Fabricated via Electrostatic Assembly and Confinement Replacement for Enhanced Lithium and Sodium Storage[J]. Small, 2015,11(45):6026-6035. doi: 10.1002/smll.201502000

    13. [13]

      Xia X, Xie J, Zhang S. Ni3S2 Nanosheet-Anchored Carbon Submicron Tube Arrays as High-Performance Binder-Free Anodes for Na-Ion Batteries[J]. Inorg Chem Front, 2017,4(1):131-138.  

    14. [14]

      Wang K, Huang Y, Wang M. PVD Amorphous Carbon Coated 3D NiCo2O4 on Carbon Cloth as Flexible Electrode for Both Sodium and Lithium Storage[J]. Carbon, 2017,125:375-383. doi: 10.1016/j.carbon.2017.09.080

    15. [15]

      Xu S, Yao Y, Guo Y. Textile Inspired Lithium-Oxygen Battery Cathode with Decoupled Oxygen and Electrolyte Pathways[J]. Adv Mater, 2018,30(4)1704907. doi: 10.1002/adma.201704907

    16. [16]

      Fei J, Cui Y, Li J. A Flexible Sb2O3/Carbon Cloth Composite as a Free-Standing High Performance Anode for Sodium Ion Batteries[J]. Chem Commun, 2017,53(98):13165-13167. doi: 10.1039/C7CC06945F

    17. [17]

      Liu S, Luo Z, Tian G. TiO2 Nanorods Grown on Carbon Fiber Cloth as Binder-Free Electrode for Sodium-ion Batteries and Flexible Sodium-Ion Capacitors[J]. J Power Sources, 2017,363:284-290. doi: 10.1016/j.jpowsour.2017.07.098

    18. [18]

      Amin K, Meng Q, Ahmad A. A Carbonyl Compound-Based Flexible Cathode with Superior Rate Performance and Cyclic Stability for Flexible Lithium-Ion Batteries[J]. Adv Mater, 2018,30(4)1703868. doi: 10.1002/adma.201703868

    19. [19]

      Zhang L L, Li Z, Yang X L. Binder-free Li3V2(PO4)3/C Membrane Electrode Supported on 3D Nitrogen-Doped Carbon Fibers for High-Performance Lithium-Ion Batteries[J]. Nano Energy, 2017,34:111-119. doi: 10.1016/j.nanoen.2017.02.026

    20. [20]

      Li X, Wu H, Elshahawy A M. Cactus-Like NiCoP/NiCo-OH 3D Architecture with Tunable Composition for High-Performance Electrochemical Capacitors[J]. Adv Funct Mater, 2018,28(20)1800036. doi: 10.1002/adfm.201800036

    21. [21]

      Liu Y, Yang Y, Wang X. Flexible Paper-like Free-Standing Electrodes by Anchoring Ultrafine SnS2 Nanocrystals on Graphene Nanoribbons for High-Performance Sodium Ion Batteries[J]. ACS Appl Mater Interfaces, 2017,9(18):15484-15491. doi: 10.1021/acsami.7b02394

    22. [22]

      Liu Y, Zhang A, Shen C. Red Phosphorus Nanodots on Reduced Graphene Oxide as a Flexible and Ultra-fast Anode for Sodium-Ion Batteries[J]. ACS Nano, 2017,11(6):5530-5537. doi: 10.1021/acsnano.7b00557

    23. [23]

      Liu Y, Zhang N, Yu C. MnFe2O4@C Nanofibers as High-Performance Anode for Sodium-Ion Batteries[J]. Nano Lett, 2016,16(5):3321-3328. doi: 10.1021/acs.nanolett.6b00942

    24. [24]

      Islam M, Subramaniyam C, Akhter T. Three Dimensional Cellular Architecture of Sulfur Doped Graphene:Self-standing Electrode for Flexible Supercapacitors, Lithium Ion and Sodium Ion Batteries[J]. J Mater Chem A, 2017,5(11):5290-5302. doi: 10.1039/C6TA10933K

    25. [25]

      Hwang C, Song W, Han J. Foldable Electrode Architectures Based on Silver-Nanowire- Wound or Carbon-Nanotube-Webbed Micrometer-Scale Fibers of Polyethylene Terephthalate Mats for Flexible Lithium-Ion Batteries[J]. Adv Mater, 2018,30(7)1705445. doi: 10.1002/adma.201705445

    26. [26]

      Pu X, Liu M, Li L. Wearable Textile-Based In-Plane Microsupercapacitors[J]. Adv Energy Mater, 2016,6(24)1601254. doi: 10.1002/aenm.201601254

    27. [27]

      Wang B, Liu X, Liu Q. Three-Dimensional Non-woven Poly(Vinyl Alcohol-co-Ethylene) Nanofiber Based Polyaniline Flexible Electrode for High Performance Supercapacitor[J]. J Alloys Compd, 2017,715:137-145. doi: 10.1016/j.jallcom.2017.04.317

  • 加载中
    1. [1]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    2. [2]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    7. [7]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    10. [10]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    11. [11]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    12. [12]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    13. [13]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    14. [14]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    15. [15]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    16. [16]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    17. [17]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    18. [18]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    19. [19]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    20. [20]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

Metrics
  • PDF Downloads(1)
  • Abstract views(579)
  • HTML views(117)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return