Citation: FAN Liangjiao, TIAN Yuqin, QIAN Qin, CHEN Lei, GUO Hongwei, XIN Aiyuan, HOU Wanguo. Rheological Properties of Xanthan Gum/Guar Gum Mixed Solution and Its Borax-Crosslinked System[J]. Chinese Journal of Applied Chemistry, ;2020, 37(5): 531-540. doi: 10.11944/j.issn.1000-0518.2020.05.190293 shu

Rheological Properties of Xanthan Gum/Guar Gum Mixed Solution and Its Borax-Crosslinked System

  • Corresponding author: HOU Wanguo, wghou@sdu.edu.cn
  • Received Date: 31 October 2019
    Revised Date: 13 January 2020
    Accepted Date: 2 March 2020

    Fund Project: Supported by the National Key R&D Program During the 13th Five-Year Plan Period of China(No.2016ZX05040-005), the Key Scientific and Technological Research Projects of Sinopec(No.P18048-2)the National Key R&D Program During the 13th Five-Year Plan Period of China 2016ZX05040-005the Key Scientific and Technological Research Projects of Sinopec P18048-2

Figures(5)

  • The rheological properties of xanthan (XG) /guar gum (GG) mixed solutions and their borax-crosslinked systems were investigated at a total solution concentration of 2.00 g/L. The synergistic interaction viscosification efficiency between XG and GG as well as the influence of solution composition, pH, and electrolytes (NaCl and CaCl2) on the rheological properties were discussed. Under the studied conditions, all solution systems including pure XG, pure GG, and mixed XG/GG solutions as well as their borax-crosslinked systems behave as pseudoplastic fluids, and the rheological curves can be described by the Herschel-Bulkley and Casson models. The mixing of XG and GG exhibits a significant "synergistic viscosification effect". When the mass fraction of XG in the two polymers (w(XG)) is 20% and 90%, maximum values of the synergistic viscosification rate (Rm) are observed, which are 42% and 34%, respectively. The XG/GG mixed solutions can be crosslinked by borax, and the crosslinking effect is enhanced with a decrease in w(XG) or an increase in borax mass concentration (ρ(B)). At w(XG)=50% and ρ(B)=1.00 g/L, the crosslinking viscosification rate (R) is up to 85%. In the studied pH range (6.2~10.0), there is no obvious change in the rheological properties for XG/GG mixed solutions, while for the borax-crosslinked systems (w(XG)=50% and ρ(B)=0.75~1.00 g/L), the apparent viscosity initially increases and then decreases, showing a maximum value at pH=9.0, and the corresponding R is up to ~107%. The addition of electrolytes (NaCl and CaCl2) leads to a significant decrease in the viscosity for the crosslinked XG/GG/B solution (w(XG)=10% and ρ(B)=0.50 g/L), and the influence of CaCl2 is more obvious than that of NaCl. These results may deepen the understanding of rheological behavior of XG/GG mixed solutions and provide important information for their practical applications such as in the enhanced oil recovery.
  • 加载中
    1. [1]

      Petri D F S. Xanthan Gum:A Versatile Biopolymer for Biomedical and Technological Applications[J]. J Appl Polym Sci, 2015,132(32)42035.  

    2. [2]

      Khouryieh H A, Herald T J, Aramouni F. Intrinsic Viscosity and Viscoelastic Properties of Xanthan/Guar Mixtures in Dilute Solutions:Effect of Salt Concentration on the Polymer Interactions[J]. Food Res Int, 2007,40(7):883-893. doi: 10.1016/j.foodres.2007.03.001

    3. [3]

      Casas J A, Mohedano A F, García-Ochoa F. Viscosity of Guar Gum and Xanthan/Guar Gum Mixture Solutions[J]. J Sci Food Agric, 2000,80(12):1722-1727. doi: 10.1002/1097-0010(20000915)80:12<1722::AID-JSFA708>3.0.CO;2-X

    4. [4]

      Koop H S, de Freitas R A, de Souza M M. Topical Curcumin-Loaded Hydrogels Obtained Using Galactomannan from Schizolobium Parahybae and Xanthan[J]. Carbohydr Polym, 2015,116(13):229-236.  

    5. [5]

      Finley J W, Soto-Vaca A, Heimbach J. Safety Assessment and Caloric Value of Partially Hydrolyzed Guar Gum[J]. J Agric Food Chem, 2013,61(8):1756-1771. doi: 10.1021/jf304910k

    6. [6]

      Jang H Y, Zhang K, Chon B H. Enhanced Oil Recovery Performance and Viscosity Characteristics of Polysaccharide Xanthan Gum Solution[J]. J Ind Eng Chem, 2015,21:741-745. doi: 10.1016/j.jiec.2014.04.005

    7. [7]

      JI Yi, LI Zongshi, QIAO Weihong. Chemical Modification of Guar Gum[J]. China Surfactant Deterg Cosmet, 2005,35(2):111-114. doi: 10.3969/j.issn.1001-1803.2005.02.013

    8. [8]

      Mokhtari M, Ozbayoglu E M. Laboratory Investigation on Gelation Behavior of Xanthan Crosslinked with Borate Intended to Combat Lost Circulation[C]. Tunisia: Society of Petroleum Engineers(SPE), 2010: 136094.

    9. [9]

      Mundargi R C, Patil S A, Aminabhavi M. Evaluation of Acrylamide-Grafted-Xanthan Gum Copolymer Matrix Tablets for Oral Controlled Delivery of Antihypertensive Drugs[J]. Carbohydr Polym, 2007,69(1):130-141. doi: 10.1016/j.carbpol.2006.09.007

    10. [10]

      Wang X, Xin H, Zhu W. Synthesis and Characterization of Modified Xanthan Gum Using Poly(Maleic Anhydride/1-Octadecene)[J]. Colloid Polym Sci, 2016,294(8):1333-1341. doi: 10.1007/s00396-016-3898-3

    11. [11]

      Zhang Z, Pan H, Liu P. Boric Acid Incorporated on the Surface of Reactive Nanosilica Providing a Nano-crosslinker with Potential in Guar Gum Fracturing Fluid[J]. J Appl Polym Sci, 2017,134(27)45037. doi: 10.1002/app.45037

    12. [12]

      Bilanovic D, tarosvetsky J, Armon R H. Cross-Linking Xanthan and Other Compounds with Glycerol[J]. Food Hydrocolloid, 2015,44:129-135. doi: 10.1016/j.foodhyd.2014.09.024

    13. [13]

      LIU Ru, LI Haiping, HOU Wanguo. Synthesis of Sodium Trimetaphosphate Crosslinked Xanthan Gum and Rheological Properties of Its Aqueous Solution[J]. Chinese J Appl Chem, 2015,32(9):1061-1069.  

    14. [14]

      YANG Tingting, LI Haiping, HOU Wanguo. Rheological Properties and Temperature Resistance of Epichlorohydrin Crosslinked Xanthan Gum Aqueous Solutions[J]. Polym Mater Sci Eng, 2015,31(5):39-43.  

    15. [15]

      Tako M, Nakamura S. Synergistic Interaction Between Xanthan and Guar Gum[J]. Carbohydr Res, 1985,138(2):207-213. doi: 10.1016/0008-6215(85)85104-1

    16. [16]

      Wang F, Wang Y J, Sun Z. Conformational Role of Xanthan Gum in Its Interaction with Guar Gum[J]. J Food Sci, 2002,67(9):3289-3294. doi: 10.1111/j.1365-2621.2002.tb09580.x

    17. [17]

      WANG Yuanlan, HUANG Shouen, LI Zhonghai. The Influence Factor on Viscosity and Microstructure of Xanthan/Guar Gum Mixed Solutions[J]. J Chinese Inst Food Sci Technol, 2009,9(4):118-123. doi: 10.3969/j.issn.1009-7848.2009.04.019

    18. [18]

      Takemasa M, Nishinari K. Solution Structure of Molecular Associations Investigated Using NMR for Polysaccharides:Xanthan/Galactomannan Mixtures[J]. J Phys Chem B, 2016,120(2):3027-3037.  

    19. [19]

      Rocks J K. Xanthan Gum[J]. Food Technol, 1971,25(5):22-31.  

    20. [20]

      Higiro J, Herald T J, Alavi S. Rheological Study of Xanthan and Locust Bean Gum Interaction in Dilute Solution[J]. Food Res Int, 2007,40(4):435-447. doi: 10.1016/j.foodres.2006.02.002

    21. [21]

      Shobha M S, Tharanathan R N. Rheological Behaviour of Pullulanase-Treated Guar Galactomannan on Co-Gelation with Xanthan[J]. Food Hydrocolloid, 2009,23(3):749-754. doi: 10.1016/j.foodhyd.2008.04.006

    22. [22]

      Sandolo C, Bulone D, Mangione M R. Synergistic Interaction of Locust Bean Gum and Xanthan Investigated by Rheology and Light Scattering[J]. Carbohydr Polym, 2010,82(3):733-741. doi: 10.1016/j.carbpol.2010.05.044

    23. [23]

      Thombare N, Jha U, Mishra S. Borax Cross-Linked Guar Gum Hydrogels as Potential Adsorbents Forwater Purification[J]. Carbohydr Polym, 2017,168:274-281. doi: 10.1016/j.carbpol.2017.03.086

    24. [24]

      Walawender W P, Chen T Y, Cala D F. An Approximate Casson Fluid Model for Tube Flow of Blood[J]. Biorheology, 1975,12(2):111-119. doi: 10.3233/BIR-1975-12202

    25. [25]

      Smith I H, Symes K C, Lawson C J. Influence of the Pyruvate Content of Xanthan on Macromolecular Association in Solution[J]. Int J Biol Macromol, 1981,3(2):129-134. doi: 10.1016/0141-8130(81)90078-7

    26. [26]

      CHEN Jialang, LIU Chongjian. Structural Flow of Casson Fluids and Determination of Casson Rheological Parameters[J]. Acta Pet Sin, 1982(2):69-80.  

    27. [27]

      Kim S, Cho Y I, Hogenauer W N. A Method of Isolating Surface Tension and Yield Stress Effects in a U-Shaped Scanning Capillary-Tube Viscometer Using a Casson Model[J]. J Non-Newton Fluid, 2002,103(2/3):205-219.  

  • 加载中
    1. [1]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    2. [2]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    3. [3]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    4. [4]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    5. [5]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    6. [6]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    7. [7]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    8. [8]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    9. [9]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    10. [10]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    11. [11]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    12. [12]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    13. [13]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    14. [14]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    15. [15]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    16. [16]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    17. [17]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    18. [18]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    19. [19]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    20. [20]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

Metrics
  • PDF Downloads(17)
  • Abstract views(1559)
  • HTML views(406)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return