Citation: GUO Hongchen, QIN Yusheng, WANG Xianhong. Acetic Acid/Oxygen Route for Efficient Synthesis of Substituted Porphyrin[J]. Chinese Journal of Applied Chemistry, ;2020, 37(3): 264-270. doi: 10.11944/j.issn.1000-0518.2020.03.190271 shu

Acetic Acid/Oxygen Route for Efficient Synthesis of Substituted Porphyrin

  • Corresponding author: WANG Xianhong, xhwang@ciac.ac.cn
  • Received Date: 14 October 2019
    Revised Date: 29 November 2019
    Accepted Date: 18 December 2019

    Fund Project: Supported by the Key Research Program of the Chinese Academy of Sciences(No.ZDRW-CN-2018-2)the Key Research Program of the Chinese Academy of Sciences ZDRW-CN-2018-2

Figures(3)

  • Recently, efficient synthesis of porphyrin has become increasingly interesting in demand of many discoveries in metalloporphyrin complexes, especially for their excellent catalytic performances. Porphyrin is a conjugated macrocyclic compound composed of four pyrrole rings connected by methenylene. The state-of-the-art porphyrin synthesis includes propionic acid method and acetic acid/nitrobenzene method, but both suffer from low yield, high cost and heavy environmental pollution. In this work, an acetic acid/oxygen route for substituted porphyrin synthesis was developed, where the reaction temperature was kept at 120℃, while O2 was fed only in the first 30 min under reactant concentration of 0.24 mol/L, leading to tetra(4-bromophenyl) porphyrin in the yield of 53.8%. It should be noted that the acetic acid/oxygen route allows the concurrence of macrocyclic framework formation and oxidation, which provides a viable strategy for efficient porphyrin synthesis in convenient and less environment loading way.
  • 加载中
    1. [1]

      Day N U, Wamser C C, Walter M G. Porphyrin Polymers and Organic Frameworks[J]. Polym Int, 2015,64(7):833-857.  

    2. [2]

      WANG Zhoufeng, DENG Wenli. Research on Synthesis of Porphyrins[J]. Process Chem, 2007,19(4):520-526.  

    3. [3]

      WU Song, ZHANG Xiaojuan, LI Shihui. Synthesis and Optical Properties of meso-Tetra(4-bromophenyl)porphyrin[J]. Chinese J Synth Chem, 2018,26(2):131-134.  

    4. [4]

      Biesaga M, Pyrzynska K, Trojanowicz M. Porphyrins in Analytical Chemistry.A Review[J]. Talanta, 2000,51(2):209-224.  

    5. [5]

      REN Lilei, PENG Xiaoxia, ZHAO Xiuli. Synthesis and Antitumor Activity of Porphyrin Modified with 5-Fluorouracil[J]. Chinese J Appl Chem, 2016,33(12):1415-1419.  

    6. [6]

      Ali H, Van Lier J E. Metal Complexes as Photo- and Radiosensitizers[J]. Chem Rev, 1999,99(9):2379-2450.  

    7. [7]

      YANG Jiandong, MA Rong, YAN Xiang. Synthesis of Morphology-Controllable Porphyrin Materials and Their Photoelectric Properties[J]. Chinese J Appl Chem, 2016,33(3):307-312.  

    8. [8]

      Qin Y S, Guo H C, Sheng X F. An Aluminum Porphyrin Complex with High Activity and Selectivity for Cyclic Carbonate Synthesis[J]. Green Chem, 2015,17(5):2853-2858.  

    9. [9]

      Zhuo C W, Qin Y S, Wang X H. Steric Hindrance Ligand Strategy to Aluminum Porphyrin Catalyst for Completely Alternative Copolymerization of CO2 and Propylene Oxide[J]. Chinese J Polym Sci, 2017,36(2):252-260.  

    10. [10]

      Zhuo C W, Qin Y S, Wang X H. Temperature-Responsive Catalyst for the Coupling Reaction of Carbon Dioxide and Propylene Oxide[J]. Chinese J Chem, 2018,36(4):299-305.  

    11. [11]

      Qin Y S, Wang X H, Zhang S B. Fixation of Carbon Dioxide into Aliphatic Polycarbonate, Cobalt Porphyrin Catalyzed Regio-Specific Poly(propylene carbonate) with High Molecular Weight[J]. J Polym Sci, Part A:Polym Chem, 2008,46(17):5959-5967.  

    12. [12]

      Sheng X F, Wang Y, Qin Y S. Aluminum Porphyrin Complexes via Delicate Ligand Design:Emerging Efficient Catalysts for High Molecular Weight Poly(propylene carbonate)[J]. RSC Adv, 2014,4:54043-54050.  

    13. [13]

      Sheng X F, Guo H C, Qin Y S. A Novel Metalloporphyrin-based Conjugated Microporous Polymer for Capture and Conversion of CO2[J]. RSC Adv, 2015,5:31664-31669.  

    14. [14]

      Cao H, Qin Y S, Zhuo C W. Homogeneous Metallic Oligomer Catalyst with Multisite Intramolecular Cooperativity for the Synthesis of CO2-based Polymers[J]. ACS Catal, 2019,9:8669-8676.  

    15. [15]

      QIN Yusheng, WANG Xianhong, WANG Fosong. Synthesis and Properties of Carbon Dioxide Based Copolymers[J]. Sci Sin:Chim, 2018,48(8):883-893.  

    16. [16]

      CHEN Xuesi, CHEN Guoqiang, TAO Youhua. Progress in Eco-polymers[J]. Acta Polym Sin, 2019,50(10):1068-1082.  

    17. [17]

      GUO Hongchen, QIN Yusheng, WANG Xianhong, et al. Process for Preparing Substituted Aryl Porphyrin: CN 201910276095.2[P](in Chinese).

    18. [18]

      Rothemund P. A New Porphyrin Synthesis. The Synthesis of Porphin[J]. J Am Chem Soc, 1936, 58: 625-627. 

    19. [19]

      Adler A D, Shergali W, Longo F R. Mechanistic Investigations of Porphyrin Systheses.I.Preliminary Studies on ms-Tetraphenylporphin[J]. J Am Chem Soc, 1964,86(15):3145-3149.  

    20. [20]

      Lindsey J S, Schreiman I C, Hsu H C. Rothemund and Adler-longo Reactions Revisited-Synthesis of Tetraphenyporphyrins under Equilibrium Conditions[J]. J Org Chem, 1987,52(5):827-836.  

    21. [21]

      Lindsey J S, Yaccrum K A, Tyhonas J S. Investigation of a Synthesis of meso-Porphyrins Employing High-Concentration Conditions and an Electron-Transport Chain for Aerobic Oxidation[J]. J Org Chem, 1994,59(3):579-587.  

    22. [22]

      GUO Cancheng, HE Xingtao, ZOU Gangyao. A New Synthesis Method for TPPH2 and It's Derivatives[J]. Chinese J Org Chem, 1991,11:416-419.  

    23. [23]

      Gradillas A, Campo C D, Sinisterra J V. Novel Synthesis of 5, 10, 15, 20-Tetraarylporphyrins Using High-valent Transition Metal Salts[J]. J Chem Soc, Perkin Trans 1, 1995,20:2611-2613.  

    24. [24]

      Mamane V, Ledoux-Rak I, Deveau S. Palladium-Catalyzed Cross-Coupling Reaction of a Chiral Ferrocenyl Zinc Reagent with Aromatic Bromides:Application to the Design of Chiral Octupoles for Second Harmonic Generation[J]. Synthesis-stuttgart, 2003,3:455-467.  

    25. [25]

      LIU Yun, XU Tongkuan, XIAO Debao. Synthesis of meso-Tethaphenylporphyrins(TPP) by Catalyst in Solvents and under Microwave Irradation[J]. J Beijing Inst Light Ind, 1998,16(4):37-44.  

    26. [26]

      GUO Hongchen, QIN Yusheng, WANG Xianhong. Study on the Copolymerization of Carbon Dioxide and Propylene Oxide under Aluminum Porphyrin Catalyst[J]. Chinese J Appl Chem, 2019,36(10):1118-1127.  

    27. [27]

      ZHAO Wenbo, LU Peixian, DENG Yaru. Synthesis Rules of meso-Porphyrins Substituted by Phenyl and 4-Pyridyl Groups[J]. Chem Reagents, 2018,40(5):487-490.  

  • 加载中
    1. [1]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    2. [2]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    3. [3]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    4. [4]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    5. [5]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    6. [6]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    7. [7]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    8. [8]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    9. [9]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

Metrics
  • PDF Downloads(3)
  • Abstract views(2113)
  • HTML views(400)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return