Research Progress in Photocatalytic Reduction of CO2 Enhanced by Oxygen Vacancy
- Corresponding author: GUO Hongxia, guohongxia.ok@163.com
Citation:
GUO Hongxia, CUI Jifang, LIU Li. Research Progress in Photocatalytic Reduction of CO2 Enhanced by Oxygen Vacancy[J]. Chinese Journal of Applied Chemistry,
;2020, 37(3): 256-263.
doi:
10.11944/j.issn.1000-0518.2020.03.190265
Ola O, Maroto-Valer M M. Review of Material Design and Reactor Engineering on TiO2 Photocatalysis for CO2 Reduction[J]. J Photochem Photobiol C, 2015,24:16-42. doi: 10.1016/j.jphotochemrev.2015.06.001
Guo H X, Kou X C, Zhao Y J. Effect of Synergistic Interaction Between Ce and Mn on the CO2 Capture of Calcium-Based Sorbent:Textural Properties, Electron Donation, and Oxygen Vacancy[J]. Chem Eng J, 2018,334:237-246. doi: 10.1016/j.cej.2017.09.198
Guo H X, Kou X C, Zhao Y J. Role of Microstructure, Electron Transfer, and Coordination State in the CO2 Capture of Calcium-Based Sorbent by Doping(Zr-Mn)[J]. Chem Eng J, 2018,336:376-385. doi: 10.1016/j.cej.2017.11.186
Guo H X, Yan S L, Zhao Y J. Influence of Water Vapor on Cyclic CO2 Capture Performance in both Carbonation and Decarbonation Stages for Ca-Al Mixed Oxide[J]. Chem Eng J, 2019,359:542-551. doi: 10.1016/j.cej.2018.11.173
Guo H X, Feng J Q, Zhao Y J. Effect of Micro-Structure and Oxygen Vacancy on the Stability of (Zr-Ce)-Additive CaO-Based Sorbent in CO2 Adsorption[J]. J CO2 Util, 2017,19:165-176. doi: 10.1016/j.jcou.2017.03.015
Guo H X, Wang S P, Li C. Incorporation of Zr into Calcium Oxide for CO2 Capture by a Simple and Facile Sol-Gel Method[J]. Ind Eng Chem Res, 2016,55:7873-7879. doi: 10.1021/acs.iecr.5b04112
Wang S P, Fan S S, Zhao Y J. Carbonation Condition and Modeling Studies of Calcium-Based Sorbent in the Fixed-Bed Reactor[J]. Ind Eng Chem Res, 2014,53(25):10457-10464. doi: 10.1021/ie500789g
Turner J A. A Realizable Renewable Energy Future[J]. Science, 1999,285(5428):687-689. doi: 10.1126/science.285.5428.687
LI Ying. Synthesis of Cu/N-UiO Composite Materials and Their Visible-Light-Driven Photocatalytic Properties[D]. Tianjin: Tianjin University, 2016(in Chinese).
Habisreutinger S N, Schmidt-Mende L, Stolarczyk J K. Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors[J]. Angew Chem Int Ed, 2013,52(29):7372-7408. doi: 10.1002/anie.201207199
Wang K, Li Q, Liu B S. Sulfur-Doped g-C3N4 with Enhanced Photocatalytic CO2 Reduction Performance[J]. Appl Catal B-Environ, 2015,176/177:44-52. doi: 10.1016/j.apcatb.2015.03.045
Tu W, Zhou Y, Zou Z. Photocatalytic Conversion of CO2 into Renewable Hydrocarbon Fuels:State-of-the-Art Accomplishment, Challenges and Prospects[J]. Adv Mater, 2014,26:4607-4626. doi: 10.1002/adma.201400087
Liu G, Yang H G, Wang X L. Enhanced Photoactivity of Oxygen-Deficient Anatase TiO2 Sheets with Dominant {001} Facets[J]. J Phys Chem C, 2009,113:21784-21788. doi: 10.1021/jp907749r
Chen Y, Cao X, Gao B. A Facile Approach to Synthesize N-Doped and Oxygen-Deficient TiO2 with High Visible-Light Activity for Benzene Decomposition[J]. Mater Lett, 2013,94:154-157. doi: 10.1016/j.matlet.2012.12.010
Liu X, Bi Y. In Situ Preparation of Oxygen-deficient TiO2 Microspheres with Modified {001} Facets for Enhanced Photocatalytic Activity[J]. RSC Adv, 2017,7:9902-9907. doi: 10.1039/C6RA28533C
Fang W, Xing M, Zhang J. Modifications on Reduced Titanium Dioxide Photocatalysts:A Review[J]. J Photochem Photobiol C, 2017,32:21-39. doi: 10.1016/j.jphotochemrev.2017.05.003
Zhang N, Gao C, Xiong Y J. Defect Engineering:A Versatile Tool for Tuning the Activation of Key Molecules in Photocatalytic Reactions[J]. J Energy Chem, 2019,37:43-57. doi: 10.1016/j.jechem.2018.09.010
LI Junli. The Preparation of Oxygen Vacancy Doped TiO2 and Research in Photocatalytic Reduction of CO2[D]. Kaifeng: Henan University, 2017(in Chinese).
Karamian E, Sharifnia S. On the General Mechanism of Photocatalytic Reduction of CO2[J]. J CO2 Util, 2016,16:194-203. doi: 10.1016/j.jcou.2016.07.004
Lee J, Sorescu D C, Deng X Y. Electron-induced Dissociation of CO2 on TiO2(110)[J]. J Am Chem Soc, 2011,133(26):10066-10069. doi: 10.1021/ja204077e
Zhang Q Y, Li Y, Ackerman E A. Visible Light Responsive Iodine-Doped TiO2 for Photocatalytic Reduction of CO2 to Fuels[J]. Appl Catal A, 2003,249:11-18. doi: 10.1016/S0926-860X(03)00205-9
Michalkiewicz B, Majewska J, Kądziołka G. Reduction of CO2 by Adsorption and Reaction on Surface of TiO2-Nitrogen Modified Photocatalyst[J]. J CO2 Util, 2014,5:47-52. doi: 10.1016/j.jcou.2013.12.004
Indrakanti V P, Kubicki J D, Schobert H H. Photoinduced Activation? of CO2 on Ti-Based Heterogeneous Catalysts:Current State, Chemical Physics-Based Insights and Outlook[J]. Energy Environ Sci, 2009,2:745-758. doi: 10.1039/b822176f
Zhao C Y, Liu L J, Zhang Q Y. Photocatalytic Conversion of CO2 and H2O to Fuels by Nanostructured Ce-TiO2/SBA-15 Composites[J]. Catal Sci Technol, 2012,2:2558-2568. doi: 10.1039/c2cy20346d
Xi G C, Ouyang S X, Li P. Ultrathin W18O49 Nanowires with Diameters below 1 nm:Synthesis, Near-infrared Absorption, Photoluminescence, and Photochemical Reduction of Carbon Dioxide[J]. Angew Chem Int Ed, 2012,51(10):2395-2399. doi: 10.1002/anie.201107681
Xie K, Umezawa N, Zhang N. Self-doped SrTiO3-δ Photocatalyst with Enhanced Activity for Artificial Photosynthesis under Visible Light[J]. Energy Environ Sci, 2011,4:4211-4219. doi: 10.1039/c1ee01594j
CHEN Xingyu. Two-Step Synthesis of Laminar Vanadate via a Facile Hydrothermal Method and Enhancing the Photocatalytic Reduction of CO2 into Solar Fuel Through Tuning the Oxide Vacancies by Vacuum Illumination Treatment[D]. Nanjing: Nanjing University, 2018(in Chinese).
Fu J W, Jiang K X, Qiu X Q. Product Selectivity of Photocatalytic CO2 Reduction Reactions[J]. Mater Today, 2020,32:222-243. doi: 10.1016/j.mattod.2019.06.009
Liu L J, Jiang Y Q, Zhao H L. Engineering Coexposed (001) and (101) Facets in Oxygen-Deficient TiO2 Nanocrystals for Enhanced CO2 Photoreduction under Visible Light[J]. ACS Catal, 2016,6(2):1097-1108. doi: 10.1021/acscatal.5b02098
Yin G H, Huang X Y, Chen T Y. Hydrogenated Blue Titania for Efficient Solar to Chemical Conversions:Preparation, Characterization, and Reaction Mechanism of CO2 Reduction[J]. ACS Catal, 2018,8(2):1009-1017. doi: 10.1021/acscatal.7b03473
Zhang W, He H, Tian Y. Defect-Engineering of Mesoporous TiO2 Microspheres with Phase Junctions for Efficient Visible-light Driven Fuel Production[J]. Nano Energy, 2019,66:1-8.
Liu J Y, Gong X Q, Alexandrova A N. Mechanism of CO2 Photocatalytic Reduction to Methane and Methanol on Defected Anatase TiO2(101):A Density Functional Theory Study[J]. J Phys Chem C, 2019,123:3505-3511. doi: 10.1021/acs.jpcc.8b09539
Rodriguez M M, Peng X, Liu L. A Density Functional Theory and Experimental Study of CO2 Interaction with Brookite TiO2[J]. J Phys Chem C, 2012,116:19755-19764. doi: 10.1021/jp302342t
Feng H F, Xu Z F, Ren L. Activating Titania for Effcient Electrocatalysis by Vacancy Engineering[J]. ACS Catal, 2018,8:4288-4293. doi: 10.1021/acscatal.8b00719
Yu H J, Li J Y, Zhang Y H. Three-in-One Oxygen Vacancy:Whole Visible-spectrum Absorption, Efficient Charge Separation and Surface Site Activation for Robust CO2 Photoreduction[J]. Angew Chem Int Ed, 2018,58(12):3880-3884.
Zhao Y, Chen G, Bian T. Defect-Rich Ultrathin ZnAl-layered Double Hydroxide Nanosheets for Efficient Photoreduction of CO2 to CO with Water[J]. Adv Mater, 2015,27:7824-7831. doi: 10.1002/adma.201503730
Wang Z L, Mao X, Chen P. Understanding the Roles of Oxygen Vacancy in Hematite Based Photoelectrochemical Process[J]. Angew Chem Int Ed, 2018,58(4):1030-1034.
Zhuang J D, Weng S X, Dai W X. Effect of Interface Defect on Charge Transfer and Photoinduced Properties of TiO2 Bilayer Films[J]. J Phys Chem C, 2012,116:25354-25361. doi: 10.1021/jp307871y
Li J, Zhang M, Guan Z. Synergistic Effect of Surface and Bulk Single-Electron-Trapped Oxygen Vacancy of TiO2 in the Photocatalytic Reduction of CO2[J]. Appl Catal B-Environ, 2017,206:300-307. doi: 10.1016/j.apcatb.2017.01.025
Khalilzadeh A, Shariati A. Photoreduction of CO2 over Heterogeneous Modified TiO2 Nanoparticles under Visible Light Irradiation:Synthesis, Process and Kinetic Study[J]. Sol Energy, 2018,164:251-261. doi: 10.1016/j.solener.2018.02.063
Li L, Li P, Wang Y J. Modulation of Oxygen Vacancy in Hydrangea-Like Ceria via Zr Doping for CO2 Photoreduction[J]. Appl Surf Sci, 2018,452:498-506. doi: 10.1016/j.apsusc.2018.04.256
Han B, Song J N, Liang S J. Hierarchical NiCo2O4 Hollow Nanocages for Photoreduction of Diluted CO2:Adsorption and Active Sites Engineering[J]. Appl Catal B-Environ, 2020,260:1-7.
Tu W, Zhou Y, Liu Q. An in Situ Simultaneous Reduction-Hydrolysis Technique for Fabrication of TiO2-Graphene 2D Sandwich-Like Hybrid Nanosheet:Graphene-Promoted Selectivity of Photocatalytic-Driven Hydrogenation and Coupling of CO2 into Methane and Ethane[J]. Adv Funct Mater, 2013,23:1743-1749. doi: 10.1002/adfm.201202349
Sun S, Watanabe M, Wu J. Ultrathin WO3·0.33H2O Nanotubes for CO2 Photoreduction to Acetate with High Selectivity[J]. J Am Chem Soc, 2018,140(20):6474-6482. doi: 10.1021/jacs.8b03316
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
a.CO2(H); b.CO2(V)