Citation: ZHANG Chenglu, SONG Fulu, ZHOU Long, HAN Zhen, BAI Ru, YANG Fan, WANG Nan, SUN Yuedong. Synthesis and Properties of Carboxylate Gemini Surfactants[J]. Chinese Journal of Applied Chemistry, ;2020, 37(3): 271-279. doi: 10.11944/j.issn.1000-0518.2020.03.190242 shu

Synthesis and Properties of Carboxylate Gemini Surfactants

  • Corresponding author: ZHANG Chenglu, zhangchenglu@lnnu.edu.cn
  • Received Date: 10 September 2019
    Revised Date: 7 November 2019
    Accepted Date: 5 December 2019

    Fund Project: Supported by the Science and Technology Project of Liaoning Education Department(No.2009A426)the Science and Technology Project of Liaoning Education Department 2009A426

Figures(5)

  • To screen environmental friendly new gemini surfactants, five carboxylate-type gemini surfactants EODPN1-EODPN 5[2, 2'-(1, 2-CH2CH2-di-O-)-di-(4-CnH2n+1COPhCOONa), n=5, 7, 9, 11 and 13] were synthesized from salicylic acid. The structures of the target products were confirmed by nuclear magnetic resonance (NMR) spectroscopy and Fourier transform infrared (FT-IR) spectrometer. The properties of EODPN as surfactants were explored, and the relevant thermodynamic parameters were obtained by theoretical calculation using the Gibbs surface adsorption equation. The results show that EODPN has excellent surface activities, extremely low critical micelle concentration (CMC) values (minimum 0.4 mmol/L), good surface tension reduction performance (minimum 29.74 mN/m) and high surface adsorption per unit area Γ(up to 3.37×10-6 mol/m2). By changing the length of the hydrophobic alkyl carbon chain, the surface activity and self-assembly ability of EODPN were optimized, and EODPN4 was selected as the best surfactant. Based on EODPN4 which can be stably combined with copper ions, the detection of surfactant content is realized.
  • 加载中
    1. [1]

      Shamsi S A, Akbay C, Warner I M. Polymeric Anionic Surfactant for Electrokinetic Chromatography:Separation of 16 Priority Polycyclic Aromatic Hydrocarbon Pollutants[J]. Anal Chem, 1998,70(14):3078-3083. doi: 10.1021/ac980050a

    2. [2]

      LIU Jiajia, XIE Yicheng, XU Hujun. Synthesis and Properties of a Cationic Gemini Asphalt Emulsifier[J]. Chinese J Appl Chem, 2018,35(5):552-558.  

    3. [3]

      Ngimhuang J, Furukawa J, Satoh T. Synthesis of a Novel Polymeric Surfactant by Reductive N-Alkylation of Chitosan with 3-O-Dodecyl-D-glucose[J]. Polymer, 2004,45(3):837-841. doi: 10.1016/j.polymer.2003.11.034

    4. [4]

      Gao C L, Whitcombe M J, Vulfson E N. Enzymatic Synthesis of Dimeric and Trimeric Sugar-Fatty Acid Esters[J]. Enzyme Microb Technol, 1999,25(3/5):264-270.  

    5. [5]

      Kumar R S, Arunachalam S. Synthesis, Micellar Properties, DNA Binding and Antimicrobial Studies of Some Surfactant-Cobalt(Ⅲ) Complexes[J]. Biophys Chem, 2008,136(2/3):136-144.  

    6. [6]

      Yu D, Wang Y, Zhang J. Effects of Calcium Ions on Solubility and Aggregation Behavior of an Anionic Sulfonate Gemini Surfactant in Aqueous Solutions[J]. J Colloid Interface Sci, 2012,381(1):83-88. doi: 10.1016/j.jcis.2012.05.016

    7. [7]

      Sakai K, Umezawa S, Tamura M. Adsorption and Micellization Behavior of Novel Gluconamide-Type Gemini Surfactants[J]. J Colloid Interface Sci, 2008,318(2):440-448. doi: 10.1016/j.jcis.2007.10.039

    8. [8]

      Fitzgerald P A, Carr M W, Davey T W. Preparation and Dilute Solution Properties of Model Gemini Nonionic Surfactants[J]. J Colloid Interface Sci, 2004,275(2):649-658. doi: 10.1016/j.jcis.2004.02.055

    9. [9]

      Huang X, Han Y C, Wang Y X. Aggregation Properties of Cationic Gemini Surfactants with Dihydroxyethylamino Headgroups in Aqueous Solution[J]. Colloid Surf A, 2008,325(1/2):26-32.  

    10. [10]

      Li R Q, Wei L B, Hu C C. Aggregation Properties of a Novel Class of Amphiphilic Cationic Polyelectrolytes Containing Gemini Surfactant Segments[J]. J Phys Chem B, 2010,114(39):12448-12454. doi: 10.1021/jp102685w

    11. [11]

      Asefi D, Mahmoodi N M, Arami M. Effect of Nonionic Co-Surfactants on Corrosion Inhibition Effect of Cationic Gemini Surfactant[J]. Colloid Surf A, 2010,355(1/3):183-186.  

    12. [12]

      Hellberg P E, Bergström K, Holmberg K. Cleavable Surfactants[J]. J Surfactants Deterg, 2000,3(1):81-91. doi: 10.1007/s11743-000-0118-z

    13. [13]

      Ding M M, Li J H, Fu X T. Synthesis, Degradation, and Cytotoxicity of Multiblock Poly(ε-caprolactone urethane)s Containing Gemini Quaternary Ammonium Cationic Groups[J]. Biomacromolecules, 2009,10(10):2857-2865. doi: 10.1021/bm9006826

    14. [14]

      Tehrani-Bagha A R, Oskarsson H, Van Ginkel C G. Cationic Ester-Containing Gemini Surfactants:Chemical Hydrolysis and Biodegradation[J]. J Colloid Interface Sci, 2007,312(2):444-452. doi: 10.1016/j.jcis.2007.03.044

    15. [15]

      Li H B, Wang X Q. Single Quantum Dot-Micelles Coated with Gemini Surfactant for Selective Recognition of a Cation and an Anion in Aqueous Solutions[J]. Sens Actuators B-Chem, 2008,134(1):238-244. doi: 10.1016/j.snb.2008.04.041

    16. [16]

      Bagha A R T, Bahrami H, Movassagh B. Interactions of Gemini Cationic Surfactants with Anionic Azo Dyes and Their Inhibited Effects on Dyeability of Cotton Fabric[J]. Dyes Pigm, 2007,72(3):331-338. doi: 10.1016/j.dyepig.2005.09.011

    17. [17]

      Chen F Y, Liu M S, Du J. Preparation and Properties of Novel Asymmetric Gemini Alkyl olyglycosides[J]. Tenside Surfactants Deterg, 2015,27(6):455-458.  

    18. [18]

      Quagliotto P, Montoneri E, Tambone F. Chemicals from Wastes:Compost-Derived Humic Acid-Like Matter as Surfactant[J]. Environ Sci Technol, 2006,40(5):1686-1692. doi: 10.1021/es051637r

    19. [19]

      Acharya D P, Gutiérrez J M, Aramaki K. Interfacial Properties and Foam Stability Effect of Novel Gemini-Type Surfactants in Aqueous Solutions[J]. J Colloid Interface Sci, 2005,291(1):236-243. doi: 10.1016/j.jcis.2005.04.105

    20. [20]

      Liu J Y, Zhao J X, He Y J. Aggregation of Carboxylate Gemini Surfactant with P-Oxybenzene Spacer in Aqueous Solution Studied by Intrinsic Probe Spectroscopy[J]. Colloid Surf A, 2007,304(1/3):25-30.  

    21. [21]

      Renouf P, Hebrault D, Desmurs J R. Synthesis and Surface-Active Properties of a Series of New Anionic Gemini Compounds[J]. Chem Phys Lipids, 1999,99(1):21-32.  

    22. [22]

      Jiang R, Huang Y X, Zhao J X. Aqueous Two-Phase System of an Anionic Gemini Surfactant and a Eationic Conventional Surfactant Mixture[J]. Fluid Phase Equilib, 2009,277(2):114-120. doi: 10.1016/j.fluid.2008.11.018

    23. [23]

      Jiang R, Zhao J X, Ma Y H. Dynamic Adsorption of Opposite-Charged Gemini Surfactant Mixture at Air/Water Interface[J]. Colloid Surf A, 2006,289(1/3):233-236.  

    24. [24]

      Gautam A, Kambo N, Upadhyay S K. Anionic Gemini Surfactant Viz. Sodium Salt of Bis(1-dodecenylsuccinamic acid); Synthesis, Surface Properties and Micellar Effect on Oxidation of Reducing Sugars by Hexacyanoferrate(Ⅲ)[J]. Colloid Surf A, 2008,31(2/3):195-202.  

    25. [25]

      Ibrahim Y A, Elwahy A H M. Efficient Synthesis of a Rang of Benzo-Substituted Macrocyclic Diamides[J]. Synthesis, 1993,5(5):503-508.  

    26. [26]

      Wu X, Dai C, Fang S. The Effect of Hydroxyl on the Solution Behavior of a Quaternary Ammonium Gemini Surfactant[J]. Phys Chem Chem Phys, 2017,19(24):16047-16056. doi: 10.1039/C7CP00131B

    27. [27]

      LIU Haiyan, GU Daming, LIU Guoyu. Synthesis and Surface Properties of Novel Gemini Imidazole Surfactants[J]. Chem J Chinese Univ, 2013,34(2):401-407.  

    28. [28]

      Yuan F, Wang T T, Hu H M. Two luminescent d10, Metal Coordination Polymers Assembled from a Semirigid Terpyridyl Carboxylate Ligand with High Selective Detecting of Cu2+, Cr2O72-, and Acetone[J]. J Solid State Chem, 2017,251(4):79-89.  

    29. [29]

      Liu C, Tang B, Zhang S. Photoinduced Electron Transfer Mediated by Coordination Between Carboxyl on Carbon Nanodots and Cu2+ Quenching Photoluminescence[J]. J Phys Chem C, 2018,122(6):3662-3668. doi: 10.1021/acs.jpcc.7b12681

    30. [30]

      Brunner J, Kraemer R. Copper(Ⅱ)-Quenched Oligonucleotide Probes for Fluorescent DNA Sensing[J]. J Am Chem Soc, 2004,126(42):13626-13627. doi: 10.1021/ja047252a

  • 加载中
    1. [1]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    4. [4]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    5. [5]

      Chunguang Rong Miaojun Xu Xingde Xiang Song Liu . 化学热力学熵变计算的教学探讨. University Chemistry, 2025, 40(8): 323-329. doi: 10.12461/PKU.DXHX202409146

    6. [6]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    7. [7]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    8. [8]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    9. [9]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    10. [10]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    11. [11]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    12. [12]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    13. [13]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    14. [14]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    15. [15]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    16. [16]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    17. [17]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    18. [18]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    19. [19]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    20. [20]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

Metrics
  • PDF Downloads(4)
  • Abstract views(2320)
  • HTML views(304)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return