Citation: JI Wanli, ZHONG Shaofeng, YU Xueman. Preparation and Properties of Superhydrophobic and Flame-Retardant Cotton Fabric[J]. Chinese Journal of Applied Chemistry, ;2020, 37(3): 301-306. doi: 10.11944/j.issn.1000-0518.2020.03.190225 shu

Preparation and Properties of Superhydrophobic and Flame-Retardant Cotton Fabric

  • Corresponding author: JI Wanli, 63718509@qq.com
  • Received Date: 22 August 2019
    Revised Date: 23 October 2019
    Accepted Date: 19 November 2019

    Fund Project: Zhejiang Industrial Polytechnic College Project 20170283Shaoxing Key Innovation Team 222709010920717004Shaanxi University of Science and Technology BJ08-18Supported by Zhejiang Industrial Polytechnic College Project (No. 20170283), Shaoxing Key Innovation Team(No.222709010920717004), and Shaanxi University of Science and Technology(No.BJ08-18)

Figures(4)

  • Magnesium hydroxide (Mg(OH) 2) was incorporated into cotton fiber to build surface roughness and improve flame-retardancy of cotton fabric. Subsequently, flame-retardant and superhydrophobic cotton fabric was prepared by further dip-coating of cotton fabric with polydimethylsiloxane (PDMS) solution. Fourier transform infrared spectrometer (FTIR) and scanning electronic microscopy (SEM) analysis confirmed that the pristine cotton fabrics is successfully modified by Mg(OH) 2 and PDMS. The hydrophobicity, thermal stability, flame retardant and durability of the treated cotton fibers were tested. The results indicated that Mg(OH) 2 is loaded on the fabric, which makes the surface of the pristine cotton to have a certain micro-nano structure and forms a rough coating. When the concentration of Mg(OH) 2 was 1.0 mol/L, Mg(OH) 2/PDMS coated fabric had contact angle (CA) of 158°, the limit oxygen index(LOI) of 24.5%, and the thermal conductivity of 0.0305 W/(m·K), suggesting excellent superhydrophobicity and flame-retardant performance. After 20 times of washing, 100 times of friction and under extreme processing conditions for coated fabric, its CA was greater than 150°, its LOI value was higher than 23%, revealing that the coated fabric has an excellent durability.
  • 加载中
    1. [1]

      Liu H, Gao S W, Cai J S. Recent Progress in Fabrication and Applications of Superhydrophobic Coating on Cellulose-Based Substrates[J]. Materials, 2016,9(3):124-135. doi: 10.3390/ma9030124

    2. [2]

      SHANGGUANG Wenchao, AN Qiufeng, LV Zujun. Synthesis and Application of Transparent Water-Repellent and Wear Resistant Coating[J]. Fine Chem, 2018,35(3):377-382.  

    3. [3]

      Gu S J, Yang L, Huang W. Fabrication of Hydrophobic Cotton Fabrics Inspired by Polyphenol Chemistry[J]. Cellulose, 2017,24(6):2635-2646. doi: 10.1007/s10570-017-1274-1

    4. [4]

      Dong C H, Lu Z, Zhu P. Combustion Behaviors of Cotton Fabrics Ttreated by a Novel Guanidyl- and Phosphorus-Containing Polysiloxane Flame Retardant[J]. J Therm Aanl Calorim, 2015,119(1):349-357. doi: 10.1007/s10973-014-4154-z

    5. [5]

      Abou-Okeil A, El-Sawy S M, Abdel-Mohdy F A. Flame Retardant Cotton Fabrics Treated with Organophosphorus Polymer[J]. Carbohydr Polym, 2013,92(2):2293-2298. doi: 10.1016/j.carbpol.2012.12.008

    6. [6]

      Norouzi M, Zare Y, Kiany P. Nanoparticles as Effective Flame Retardants for Natural and Synthetic Textile Polymers:Application, Mechanism, and Optimization[J]. Polym Rev, 2015,55(3):1-30.  

    7. [7]

      Alongi J, Carletto R A, Blasio A D. DNA:A Novel, Green, Natural Flame Retardant and Suppressant for Cotton[J]. J Mater Chem A, 2013,1:4779-4785. doi: 10.1039/c3ta00107e

    8. [8]

      Yang Z Y, Wang X W, Lei D P. A Durable Flame Retardant for Cellulosic Fabrics[J]. Polym Degrad Stabil, 2012,97(11)24672472.  

    9. [9]

      Zhao J Q, Zhang X M, Tu R. Mechanically Robust, Flame-Retardant and Anti-bacterial Nanocomposite Films Comprised of Cellulose Nanofibrils and Magnesium Hydroxide Nanoplatelets in a Regenerated Cellulose Matrix[J]. Cellulose, 2014,21(3):1859-1872. doi: 10.1007/s10570-014-0255-x

    10. [10]

      Zhang M, Wang C Y, Wang S L. Fabrication of Superhydrophobic Cotton Textiles for Water Oil Separation Based on Drop-Coating Route[J]. Carbohydr Polym, 2013,97(1):59-64. doi: 10.1016/j.carbpol.2012.08.118

    11. [11]

      Su X J, Li H Q, Lai X J. Vapor-Liquid Sol-Gel Approach to Fabricating Highly Durable and Robust Superhydrophobic Polydimethylsiloxane@Silica Surface on Polyester Textile for Oil-Water Separation[J]. ACS Appl Mater Interfaces, 2017,9(33):28089-28099. doi: 10.1021/acsami.7b08920

    12. [12]

      Qing Y Q, Hu C B, Yang C N. Rough Structure of Electrodeposition as a Template for an Ultra-robust Self-cleaning Surface[J]. ACS Appl Mater Interfaces, 2017,9(33):16571-16580.  

    13. [13]

      Si Y F, Guo Z G. Superhydrophobic Nanocoatings:From Materials to Fabrications and to Applications[J]. Nanoscale, 2015,7:5922-5946. doi: 10.1039/C4NR07554D

    14. [14]

      Jason T, Gino P, Uwe E. Recent Advances in Superhydrophobic Electrodeposits[J]. Materials, 2016,9(3):151-165. doi: 10.3390/ma9030151

    15. [15]

      Si Y, Guo Z, Liu W. A Robust Epoxy Resins@Stearic Acid-Mg(OH)2 Micro-Nanosheet Super-hydrophobic Omnipotent Protective Coating for Real Life Applications[J]. ACS Appl Mater Interfaces, 2016,8(25):16511-16520. doi: 10.1021/acsami.6b04668

    16. [16]

      LIU Xiaoming, YUE Yanjun, ZHOU Yingchun. Preparation of Nano-magnesia by Sol-Gel Method[J]. Liaoning Chem Ind, 2005,34(9):380-381. doi: 10.3969/j.issn.1004-0935.2005.09.005

    17. [17]

      Ponomarev N, Repo E, Srivastava V. Green Thermal-assisted Synthesis and Characterization of Novel Cellulose-Mg(OH)2 Nanocomposite in PEG/NaOH Solvent[J]. Carbohydr Polym, 2017,176:327-335. doi: 10.1016/j.carbpol.2017.08.101

    18. [18]

      Ma H, Chen Z X, Mao Z P. Controlled Growth of Magnesium Hydroxide Crystals and Its Fffect on the High-Temperature Properties of Cotton/Magnesium Hydroxide Composites[J]. Vacuum, 2013,95:1-5. doi: 10.1016/j.vacuum.2013.02.001

  • 加载中
    1. [1]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    4. [4]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    5. [5]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    6. [6]

      Haoxiang Zhang Zhihan Zhao Yongchen Jin Zhiqiang Niu Jinlei Tian . Synthesis of an Efficient Absorbent Gel: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(11): 251-258. doi: 10.12461/PKU.DXHX202401084

    7. [7]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    8. [8]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    9. [9]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    10. [10]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    11. [11]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    12. [12]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    13. [13]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    14. [14]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    15. [15]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    16. [16]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    17. [17]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    18. [18]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    19. [19]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    20. [20]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

Metrics
  • PDF Downloads(13)
  • Abstract views(2554)
  • HTML views(561)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return