Citation: ZENG Lihui, LI Yuefeng, YAN Haoxiang, ZENG Yongkang, ZHANG Zhixiang, LIU Zhongwen, LIU Zhaotie. Catalytic Hydrogenation Performance of p-tert-Butyl-α-Methyl Cinnamaldehydeover Precious Metal Catalysts[J]. Chinese Journal of Applied Chemistry, ;2020, 37(3): 322-331. doi: 10.11944/j.issn.1000-0518.2020.03.190192 shu

Catalytic Hydrogenation Performance of p-tert-Butyl-α-Methyl Cinnamaldehydeover Precious Metal Catalysts

  • Corresponding author: LIU Zhaotie, ztliu@snnu.edu.cn
  • Received Date: 9 July 2019
    Revised Date: 10 January 2020
    Accepted Date: 11 February 2020

    Fund Project: the Key Industry Innovation Chain of Shaanxi Science and Technology Department(group) 2019ZDLGY06-04Supported by the Key Industry Innovation Chain of Shaanxi Science and Technology Department(group)(No.2019ZDLGY06-04)

Figures(10)

  • In this paper, Fourier transform infrared spectroscopy (FT-IR), N2 adsorption-desorption, X-ray diffraction (XRD) andtransmission electron microscopy (TEM) were used to characterize the activated carbon treated via microwave with KOH. The results show that the oxygen-containing groups on the surface of activated carbon increase greatly, and the number of micropores decrease significantly. The selective catalytic hydrogenation performances of p-tert-butyl-α-methyl cinnamaldehyde over Pt, Pd, Ru and Rh supported on activated carbon were investigated. The Pt/C catalyst shows excellent selective hydrogenation for C═O, while the Pd/C catalyst has good selectivity for hydrogenation of C═C. The product distribution of selective hydrogenation of p-tert-butyl-α-methylcinnamaldehyde catalyzed by Pd-Pt bimetallic catalyst was also studied. The results show that the selective hydrogenation of C═O is gradually increased with an increase of Pt content, while the selectivity of hydrogenation of C═C decreases gradually over the Pd-Pt bimetallic catalyst. An optimal catalytic performance is obtained over Pd-Pt bimetallic catalyst when m(Pd):m(Pt)=4:1.
  • 加载中
    1. [1]

      Su J, Chen J S. Synthetic Porous Materials Applied in Hydrogenation Reactions[J]. Micropor Mesopor Mater, 2017,237:246-259. doi: 10.1016/j.micromeso.2016.09.039

    2. [2]

      Long J, Shen K, Li Y W. Bifunctional N-Doped Co@C Catalysts for Base-Free Transfer Hydrogenations of Nitriles:Controllable Selectivity to Primary Amines vs Imines[J]. ACS Catal, 2016,7(1):275-284. doi: 10.1021/acscatal.6b02327

    3. [3]

      Amir M, Kurtan U, Baykal A. Synthesis and Application of Magnetically Recyclable Nanocatalyst Fe3O4@Nico@Cu in the Reduction of Azo Dyes[J]. Chinese J Catal, 2015,36(8):1280-1286. doi: 10.1016/S1872-2067(15)60879-8

    4. [4]

      Wang H, Rempel G L. Aqueous-Phase Catalytic Hydrogenation of Unsaturated Polymers[J]. Catal Today, 2015,247:117-123. doi: 10.1016/j.cattod.2014.04.027

    5. [5]

      Pérez L N, Moreno-Marrodan C, Barbaro P. PdNP@Titanate Nanotubes as Effective Catalyst for Continuous-Flow Partial Hydrogenation Reactions[J]. ChemCatChem, 2016,8(S):1001-1011.  

    6. [6]

      Teddy J, Falqui A, Corrias A. Influence of Particles Alloying on the Performances of Pt-Ru/CNT Catalysts for Selective Hydrogenation[J]. J Catal, 2011,278(1):59-70.  

    7. [7]

      Wu J C S, Chen W C. A Novel BN Supported Bi-metal Catalyst for Selective Hydrogenation of Crotonaldehyde[J]. Appl Catal A, 2005,289(2):179-185.  

    8. [8]

      Leng F Q, Gerber I C, Axet M R. Selectivity Shifts in Hydrogenation of Cinnamaldehyde on Electro-deficient Ruthenium Nanoparticles[J]. C R Chim, 2018,21(3/4):346-353.  

    9. [9]

      FU Xiancai, SHEN Wenxia, YAO Tianyang. Physical Chemistry(The Fourth edition)(The First Volume)[M]. Beijing:Higher Education Press, 1989, 66(in Chinese).

    10. [10]

      YI Shumei. Studies of Hydrogenation Reaction Kinetics of α, β-Unsaturated Aldehydes and Ketones over Amorphous Alloy NiB[D]. Dalian: Dalian University of Technology, 2007(in Chinese).

    11. [11]

      Bai Y, Cherkasov N, Huband S. Highly Selective Continuous Flow Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol in a Pt/SiO2 Coated Tube Reactor[J]. Catalysts, 2018,58(8):1-18.  

    12. [12]

      Hu D, Fan W Q, Liu Z. Three-Dimensionally Hierarchical Pt/C Nanocompsite with Ultra-High Dispersion of Pt Nanoparticles as a Highly Efficient Catalyst for Chemoselective Cinnamaldehyde Hydrogenation[J]. ChemCatChem, 2018,10(4):779-788. doi: 10.1002/cctc.201701301

    13. [13]

      FAN Chengyou. Spices and Their Applications[M]. Beijing:Chemical Industry Press, 1990, 263(in Chinese).

    14. [14]

      Bartok M, Molnar A. The Chemistry of Double-Bonded Functional Groups[M]. New York:Wiley, 1983:843-865.

    15. [15]

      ZHANG Guoan, SHI Gailiang, XUE Xiangru. Synthesis of 4-tert-Butyl-β-chloro-α-methyl Cinnamaldehyde[J]. Chem World, 1991(1):12-13.  

    16. [16]

      SONG Shuzhong, TANG Yongshan, PAN Guizhi. Seletive Hydrogenation of Substituted α-Methyl Cinnamic Aldehyde[J]. Fine Chem, 1994,4(11):16-18.  

    17. [17]

      LIANG Yan, RONG Zemin, ZHENG Feiyue. Selective Hydrogenation of p-tert-Butyl-α-methyl Cinnamaldehyde to Lilial over Modified Pd/C[J]. Fine Chem, 2011,6(28):564-567.  

    18. [18]

      Joseph L, Paramus N J, Alvin F. Hydrogenation of CinnamicAldehydes and Derivatives Thereof: US, 3280192[P]. 1966-10-18.

    19. [19]

      DENG Qinying, LIU Lan, DENG Huimin. Spectral Analysis Tutorial[M]. Beijing:Science Press, 2007:29-72(in Chinese).

    20. [20]

      Laine J, Calafat A, Labady M. Preparation and Characterization of Activated Carbons from Coconut Shell Impregnated with Phosphoric Acid[J]. Carbon, 1989,27(2):191-195. doi: 10.1016/0008-6223(89)90123-1

    21. [21]

      Shen W Z, Li Z J, Liu Y H. Surface Chemical Functional Groups Modification of Porous Carbon[J]. Recent Pat Chem Eng, 2008,1(1):27-40. doi: 10.2174/2211334710801010027

    22. [22]

      CHEN Zhening, CHEN Zheng, FU Gang, et al. Mechanisms for the Selective Reduction of Cinnamaldehyde[C]//The 27th Annual Meeting of the Chinese Chemical Society, Summary of the 11th Session, 2010, 11-P-098(in Chinese).

    23. [23]

      Giroir-Fendler A, Richard D, Gallezot P. Selectivity in Cinnamaldehyde Hydrogenation of Group-Ⅷ Metals Supported on Graphite and Carbon[J]. Stud Surf Sci Catal, 1988,41:171-178. doi: 10.1016/S0167-2991(09)60812-0

    24. [24]

      Delbecq F, Sautet P. Competitive C=C and C=O Adsorption of α, β-Unsaturated Aldehydes on Pt and Pd Surfaces in Relation with the Selectivity of Hydrogenation Reactions:A Theoretical Approach[J]. J Catal, 1995,152(2):217-236.

    25. [25]

      Matsui T, Harada M, Bando K K. EXAFS Study on the Sulfidation Behavior of Pd, Pt and Pd-Pt Catalysts Supported on Amorphous Silica and High-silica USY Zeolite[J]. Appl Catal A, 2005,290(1/2):73-80.  

    26. [26]

      Niquille-Röthlisberger A, Prins R. Hydrodesulfurization of 4, 6-Dimethyldibenzothiophene and Dibenzothiopheneover Alumina-Supported Pt, Pd, and Pt-Pd Catalysts[J]. J Catal, 2006,242(1):207-216.  

    27. [27]

      Yasuda H, Yoshimura Y. Hydrogenation of Tetralinover Zeolite-supported Pd-Pt Catalysts in the Presence of Dibenzothiophene[J]. Catal Lett, 1997,46(1/2):43-48. doi: 10.1023/A:1019021224505

    28. [28]

      Matsubayashi N, Yasuda H, Imaura M. EXAFS Study on Pd-Pt Catalyst Supported on USY Zeolite[J]. Catal Today, 1998,45(1/4):375-380.  

    29. [29]

      Yasuda H, Matsubayashi N, Sato T. Confirmation of Sulfur Tolerance of Bimetallic Pd-Pt Supported on Highly Acidic USY Zeolite by EXAFS[J]. Catal Lett, 1998,54(1/2):23-27. doi: 10.1023/A:1019079906043

    30. [30]

      Guillon E, Lynch J, Uzio D. Characterisation of Bimetallic Platinum Systems:Application to the Reduction of Aromatics in Presence of Sulfur[J]. Catal Today, 2001,65(2/4):201-208.  

    31. [31]

      Lee J K, Rhee H K. Sulfur Tolerance of Zeolite Beta-Supported Pd-Pt Catalysts for the Isomerization of n-Hexane[J]. J Catal, 1998,177(2):208-216.  

  • 加载中
    1. [1]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    2. [2]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    10. [10]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    11. [11]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    12. [12]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    13. [13]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    14. [14]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    15. [15]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    16. [16]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    17. [17]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    18. [18]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    19. [19]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    20. [20]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(4)
  • Abstract views(2532)
  • HTML views(432)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return