Citation: SUN Xiaotong, CHEN Nan, LIANG Hanxue, LI Zengling, LIU Qianwen, QU Liangti. Progress of Fabrication of One-Dimensional Hybrid Nanomaterials by Template-Confined Growth and Their Diverse Applications[J]. Chinese Journal of Applied Chemistry, ;2020, 37(2): 123-133. doi: 10.11944/j.issn.1000-0518.2020.02.190261 shu

Progress of Fabrication of One-Dimensional Hybrid Nanomaterials by Template-Confined Growth and Their Diverse Applications

  • Corresponding author: CHEN Nan, gabechain@bit.edu.cn
  • Received Date: 9 October 2019
    Revised Date: 5 November 2019
    Accepted Date: 26 November 2019

    Fund Project: Beijing Natural Science Foundation 2172049National Natural Science Foundation of China 21671020Supported by the National Natural Science Foundation of China(No.21671020), and Beijing Natural Science Foundation(No.2172049)

Figures(6)

  • Due to their unique physical and chemical properties, one-dimensional (1D) hybrid nanomaterials have been widely used in electrical, optical, catalytic and other fields, and their preparation methods are critical to the regulation of performance. In recent years, template method has been widely used as a simple and general synthetic method for the synthesis of 1D nanostructures and nanoarrays. This paper discusses trends in the 1D hybrid nanomaterials prepared by anodic aluminum oxide(AAO) template method combined with other techniques, and their applications in stimuli-responsive devices, energy storage and conversion devices, catalysis, etc.
  • 加载中
    1. [1]

      CHEN Nan, ZHONG Guilin, ZHANG Guofeng. Application and Interaction Mechanism of Graphene in Polymer Flame Retardant Materials[J]. Chinese J Appl Chem, 2018,35(3):307-316.  

    2. [2]

      Yuan J, Müller A H E. One-dimensional Organic-Inorganic Hybrid Nanomaterials[J]. Polymer, 2010,51(18):4015-4036. doi: 10.1016/j.polymer.2010.06.064

    3. [3]

      Garnett E, Mai L Q, Yang P D. Introduction:1D Nanomaterials/Nanowires[J]. Chem Rev, 2019,119:8955-8957. doi: 10.1021/acs.chemrev.9b00423

    4. [4]

      Huang Y, Zhang L R. Research Status and Development Trend of Nanomaterials Preparation Methods[J]. Sci Technol Consult Herald, 2015,10248.

    5. [5]

      Xie Y D, Kocaefe D, Chen C Y. Review of Research on Template Methods in Preparation of Nanomaterials[J]. J Nano Mater, 2016,2016:1-10.  

    6. [6]

      Chen N, Huang C, Yang W. Growth Control for Architecture Molecular Conductor of Low Dimension Nanostructures[J]. J Phys Chem C, 2010,114(30):12982-12986. doi: 10.1021/jp103911x

    7. [7]

      Lee W, Park S J. Porous Anodic Aluminum Oxide:Anodization and Templated Synthesis of Functional Nanostructures[J]. Chem Rev, 2014,114:7487-7556. doi: 10.1021/cr500002z

    8. [8]

      Xu Q, Meng G, Han F. Porous AAO Template-assisted Rational Synthesis of Large-scale 1D Hybrid and Hierarchically Branched Nanoarchitectures[J]. Prog Mater Sci, 2018,95:243-285. doi: 10.1016/j.pmatsci.2018.02.004

    9. [9]

      ZHANG Jilin, HONG Guangyan. Synthesis of Nanomaterials Using AAO Templates[J]. Chinese J Appl Chem, 2004,21(1):6-11.  

    10. [10]

      Liu K, Chen J, Zhou L. Fabrication of High Quality Ordered Porous Anodic Aluminum Oxide Templates[J]. High Power Laser Part Beams, 2010,22(7):1531-1534. doi: 10.3788/HPLPB20102207.1531

    11. [11]

      Wei Q, Fu Y, Zhang G. Rational Design of Nnovel Nnanostructured Arrays Based on Porous AAO Templates for Electrochemical Energy Storage and Conversion[J]. Nano Energy, 2018,55:234-259.  

    12. [12]

      ZHANG Zhang, HU Die, ZHANG Xiaoyan. Research Progress of Porous AAO Template Synthesis for Low-dimensional Ordered Nanostructure Array[J]. J South China Norm Univ(Nat Sci Ed), 2016,48(6):83-91.  

    13. [13]

      Li J, Zhang G F, Chen N. Built Structure of Ordered Vertically Aligned Codoped Carbon Nanowire Arrays for Supercapacitors[J]. ACS Appl Mater Interfaces, 2017,9(29):24840-24845. doi: 10.1021/acsami.7b05365

    14. [14]

      Nie X W, Chen N, Ji B X. Gradient Doped Polymer Nanowire for Moistelectric Nanogenerator[J]. Nano Energy, 2018,46:297-304. doi: 10.1016/j.nanoen.2018.02.012

    15. [15]

      Chen N, Qian X M, Lin H W. Growing Uniform Copolymer Nanowire Arrays for High Stability and Efficient Field Emission[J]. Mater Chem, 2012,22(22):11068-11072. doi: 10.1039/c2jm16368c

    16. [16]

      Guo Y B, Li Y L, Li Y J. Construction of Heterojunction Nanowires from Polythiophene/Polypyrrole for Applications as Efficient Switches[J]. Chem-Asian J, 2011,6(1):98-102. doi: 10.1002/asia.201000400

    17. [17]

      Guo Y, Tang Q, Liu H. Light-Controlled Organic Inorganic P-N Junction Nanowires[J]. J Am Chem Soc, 2008,130(29):9198-9199. doi: 10.1021/ja8021494

    18. [18]

      Lin H W, Liu H B, Qian X M. Constructing a Blue Light Photodetector on Inorganic/Organic p-n Heterojunction Nanowire Arrays[J]. Inorg Chem, 2011,50(16):7749-7753. doi: 10.1021/ic200900a

    19. [19]

      Qian X M, Liu H B, Chen N. Architecture of CuS/PbS Heterojunction Semiconductor Nanowire Arrays for Electrical Switches and Diodes[J]. Inorg Chem, 2012,51(12):6771-6775. doi: 10.1021/ic300471j

    20. [20]

      Xie W C, Zhang G F, Chen N. Axial Heterostructure Nanoarray as All-Solid-State Micro-supercapacitors[J]. Int J Energy Res, 2019,43:6013-6025. doi: 10.1002/er.4739

    21. [21]

      Chen N, Qian X M, Lin H W. Synthesis and Characterization of Axial Heterojunction Inorganic Organic Semiconductor Nanowire Arrays[J]. Dalton Trans, 2011,40(41):10804-10808. doi: 10.1039/c1dt10926j

    22. [22]

      Chen N, Chen S H, Ouyang C B. Electronic Logic Gates from Three-segment Nanowires Featuring Two P-N Heterojunctions[J]. NPG Asia Mater, 2013,5(8)e59. doi: 10.1038/am.2013.36

    23. [23]

      Chen N, Xue Z, Yang H. Growth of Axial Nested P-N Heterojunction Nanowires for High Performance Diodes[J]. Phys Chem Chem Phys, 2015,17(3):1785-1789. doi: 10.1039/C4CP04397A

    24. [24]

      Guo Y, Liu H B, Li Y J. Controlled Core-Shell Structure for Efficiently Enhancing Field-Emission Properties of Organic-Inorganic Hybrid Nanorods[J]. J Phys Chem C, 2009,113(29):12669-12673. doi: 10.1021/jp9030656

    25. [25]

      Hu J, Shirai Y, Han L. Template Method for Fabricating Interdigitate P-N Heterojunction for Organic Solar Cell[J]. Nanoscale Res Lett, 2012,7(1)469. doi: 10.1186/1556-276X-7-469

    26. [26]

      Chen N, Liu C, Zhang J H. Synthesis of (4-Hexyloxybenzoyl)butylsaure Methyl Amide/Poly(3-hexylthiophene) Heterojunction Nanowire Arrays[J]. ACS Appl Mater Interfaces, 2012,4(9):4841-4845. doi: 10.1021/am301174a

    27. [27]

      Zhao F, Liang Y, Cheng H H. Highly Efficient Moisture-enabled Electricity Generation from Graphene Oxide Frameworks[J]. Energy Environ Sci, 2016,9(3):912-916. doi: 10.1039/C5EE03701H

    28. [28]

      Ren G, Wu P T, Jenekhe S A. Solar Cells Based on Block Copolymer Semiconductor Nanowires:Effects of Nanowire Aspect Ratio[J]. ACS Nano, 2011,5(1):376-384. doi: 10.1021/nn1017632

    29. [29]

      Lin H W, Chen K, Li M K. Constructing a Green Light Photodetector on Inorganic/Organic Semiconductor Homogeneous Hybrid Nanowire Arrays with Remarkably Enhanced Photoelectric Response[J]. ACS Appl Mater Interfaces, 2019,11(10):10146-10152. doi: 10.1021/acsami.8b20340

    30. [30]

      Ponrouch A, Garbarino S, Bertin E. Ultra High Capacitance Values of Pt@RuO2 Core-Shell Nanotubular Electrodes for Microsupercapacitor Applications[J]. J Power Sources, 2013,221:228-231. doi: 10.1016/j.jpowsour.2012.08.033

    31. [31]

      NIE Xiaowei, CHEN Nan, LI Jing. Controllable Preparation and Application of Graphene-based Fiber Capacitors[J]. Chinese J Appl Chem, 2016,33(11):1234-1244. doi: 10.11944/j.issn.1000-0518.2016.11.160330 

    32. [32]

      Simon P, Gogotsi Y. Materials for Electrochemical Capacitors[J]. Nat Mater, 2008,7:845-854. doi: 10.1038/nmat2297

    33. [33]

      Liu R, Lee S B. MnO2/Poly(3, 4-Ethylenedioxythiophene) Coaxial Nanowires by One-Step Coelectrodeposition for Electrochemical Energy Storage[J]. J Am Chem Soc, 2008,130(10):2942-2943. doi: 10.1021/ja7112382

    34. [34]

      Huynh W U, Dittmer J J, Alivisatos A P. Hybrid Nanorod-Polymer Solar Cells[J]. Science, 2002,295(5564):2425-2427. doi: 10.1126/science.1069156

    35. [35]

      Kelzenberg M D, Turner-Evans D B, Kayes B M. Photovoltaic Measurements in Single-nanowire Silicon Solar Cells[J]. Nano Lett, 2008,8(2):710-714. doi: 10.1021/nl072622p

    36. [36]

      Tian B, Zheng X, Kempa T J. Coaxial Silicon Nanowires as Solar Cells and Nanoelectronic Power Sources[J]. Nature, 2007,449(7164):885-889. doi: 10.1038/nature06181

    37. [37]

      Guo Y B, Zhang Y J, Liu H B. Assembled Organic/Inorganic p-n Junction Interface and Photovoltaic Cell on a Single Nanowire[J]. J Phys Chem Lett, 2010,1:327-330. doi: 10.1021/jz9002058

    38. [38]

      Yoo S H, Liu L, Ku T W. Single Inorganic-Organic Hybrid Photovoltaic Nanorod[J]. Appl Phys Lett, 2013,103(14):16-24.  

    39. [39]

      Kim K, Lee J W, Lee S H. Nanoscale Optical and Photoresponsive Electrical Properties of P3HT and PCBM Composite Nanowires[J]. Org Electron, 2011,12(10):1695-1700. doi: 10.1016/j.orgel.2011.06.019

    40. [40]

      Ozel T, Bourret G R, Schmucker A L. Hybrid Semiconductor Core-Shell Nanowires with Tunable Plasmonic Nanoantennas[J]. Adv Mater, 2013,25(32):4515-4520. doi: 10.1002/adma.201301367

    41. [41]

      Cao F F, Guo Y G, Wan L J. Better Lithium-Ion Batteries with Nanocable-Like Electrode Materials[J]. Energy Environ Sci, 2011,4(5):1634-1642. doi: 10.1039/c0ee00583e

    42. [42]

      Chan C K, Peng H, Liu G. High-performance Lithium Battery Anodes Using Silicon Nanowires[J]. Nat Nanotechnol, 2008,3(1)31. doi: 10.1038/nnano.2007.411

    43. [43]

      Cho J H, Picraux S T. Enhanced Lithium Ion Battery Cycling of Silicon Nanowire Anodes by Template Growth to Eliminate Silicon Underlayer Islands[J]. Nano Lett, 2013,13(11):5740-5747. doi: 10.1021/nl4036498

    44. [44]

      Beaulieu L Y, Hatchard T D, Bonakdarpour A. Reaction of Li with Alloy Thin Films Studied by in Situ AFM[J]. J Electrochem Soc, 2003,150(11):A1457-A1464. doi: 10.1149/1.1613668

    45. [45]

      Fang D, Li L C, Xu W L. High Capacity Lithium Ion Battery Anodes Using Sn Nanowires Encapsulated Al2O3 Tubes in Carbon Matrix[J]. Adv Mater Interfaces, 2016,3(5)1500491. doi: 10.1002/admi.201500491

    46. [46]

      Guo J C, Xu Y H, Wang C S. Sulfur-Impregnated Disordered Carbon Nanotubes Cathode for Lithium-Sulfur Batteries[J]. Nano Lett, 2011,11(10):4288-4294. doi: 10.1021/nl202297p

    47. [47]

      Kim Y S, Ahn H J, Nam S H. Honeycomb Pattern Array of Vertically Standing Core-shell Nanorods:Its Application to Li Energy Electrodes[J]. Appl Phys Lett, 2008,93(10)103104. doi: 10.1063/1.2977862

    48. [48]

      Taberna P L, Mitra S, Poizot P. High Rate Capabilities Fe3O4-based Cu Nano-architectured Electrodes for Lithium-Ion Battery Applications[J]. Nat Mater, 2006,5(7):567-573. doi: 10.1038/nmat1672

    49. [49]

      Chen N, Liu Q W, Liu C. MEG Actualized by High-Valent Metal Carrier Transport[J]. Nano Energy, 2019,65104047. doi: 10.1016/j.nanoen.2019.104047

    50. [50]

      Jang B, Wang W, Wiget S. Catalytic locomotion of Core-Shell Nanowire Motors[J]. ACS Nano, 2016,10(11):9983-9991. doi: 10.1021/acsnano.6b04224

    51. [51]

      Li X R, Li H Y, Song G J. Preparation and Magnetic Properties of Nd/FM(FM=Fe, Co, Ni)/PA66 Three-Layer Coaxial Nanocables[J]. Nanoscale Res Lett, 2018,13(1)326. doi: 10.1186/s11671-018-2742-8

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    3. [3]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    4. [4]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    5. [5]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    6. [6]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    7. [7]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    8. [8]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    9. [9]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    10. [10]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    11. [11]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    12. [12]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    13. [13]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    14. [14]

      Yang Li Jiachen Li Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016

    15. [15]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    16. [16]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    17. [17]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    18. [18]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    19. [19]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    20. [20]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

Metrics
  • PDF Downloads(6)
  • Abstract views(534)
  • HTML views(94)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return