Citation: LIU Danfeng, DING Mingming, ZAHNG Lili, SUN Zhaoyan, SHI Tongfei, HUANG Yineng. Finite Element Analysis of Mechanical Properties of Polyimide Fiber under Thermal Field[J]. Chinese Journal of Applied Chemistry, ;2020, 37(2): 190-197. doi: 10.11944/j.issn.1000-0518.2020.02.190238 shu

Finite Element Analysis of Mechanical Properties of Polyimide Fiber under Thermal Field

  • Corresponding author: SHI Tongfei, tfshi@ciac.ac.cn HUANG Yineng, ynhuang@nju.edu.cn
  • Received Date: 6 September 2019
    Revised Date: 11 October 2019
    Accepted Date: 12 November 2019

    Fund Project: Supported by the National Natural Science Foundation of China(No.21647114)the National Natural Science Foundation of China 21647114

Figures(13)

  • Using COMSOL Multiphysics 5.3 package, we establish a three-dimensional finite element model to calculate the mechanical properties of polyimide fibers with the temperature field generated by the solid heat transfer and surface radiation heat transfer. We analyze the effects of the size and location of holes and the difference of thermal expansion coefficient on the mechanical properties of polyimide fibers. The results indicate that under the condition of polyimide fiber with fixed constraints at both ends, the stress exhibits the similar trends in the temperature fields generated by solid heat transfer and surface radiation heat transfer. The holes in the polyimide fiber reduce the mechanical properties, which results in the larger holes corresponding to the more unbalanced stress distribution. This is more unfavorable to the stability of the polyimide fibers. Meanwhile, the stress decreases with the increase of negative axial coefficient of thermal expansion.
  • 加载中
    1. [1]

      Hirsch S S, Lityquist M. Thermal Stability of Model Compounds Related to Thermostable Polymers by Pyrolysis-Gas Chromatography[J]. Appl Polym Sci, 1967,11:305-310. doi: 10.1002/app.1967.070110211

    2. [2]

      ZHANG Qinghua, ZHANG Chunhua, Chen Dajun. Research Progress on High Performance Polyimide Fibers[J]. World Sci, 2002,27(5):11-14.  

    3. [3]

      YAN Cheng, LIU Jiaming, TANG Wentao. Study on Flame Retardant Properties of Polyimide Protective Fabrics[J]. Adv Text Tech, 2018,26(06):95-98.  

    4. [4]

      WANG Xiujiang. Study on Heat treatment Process, Structure and Properties of Polyimide Fiber[D]. Beijing: Beijing University of Chemical Technology, 2012(in Chinese).

    5. [5]

      Sun X, Bu J, Liu W. Surface Modification of Polyimide Fibers by Oxygen Plasma Treatment and Interfacial Adhesion Behavior of a Polyimide Fiber/Epoxy Composite[J]. Sci Eng Compos Mater, 2015,24(4):477-484.  

    6. [6]

      Zhang Q, Ding M, Chen D. Mechanical Properties of BPDA-ODA Polyimide Fibers[J]. Eur Polym J, 2004,4(11):2487-2493.  

    7. [7]

      Cheng Y, Dong J, Yang C R. Synthesis of Poly(benzobisoxazole-co-imide) and Fabrication of High Performance Fifibers[J]. Polymer, 2017,133:50-59. doi: 10.1016/j.polymer.2017.11.015

    8. [8]

      LV Jiabin, WANG Rui. Structure Properties and Applications of Polyimide Fibers[J]. Hi-Tech Fiber Appl, 2016,41(5):23-26. doi: 10.3969/j.issn.1007-9815.2016.05.006

    9. [9]

      ZHANG Mengying, NIU Hongqing, HAN Enlin. Study on High Strength and High Modulus Polyimide Fiber and Application[J]. Insulat Mater, 2016,49(8):12-16.  

    10. [10]

      CHANG Jingjing, NIU Hongqing, WU Dezhen. Progress of Polyimide Fiber[J]. Polym Bull, 2017(3):19-27.  

    11. [11]

      ZUO Qinping, LIN Hong, CHEN Yuyue. Development and Application Progress of Polyimide Fiber[J]. Chinese Text Lead, 2018,894(05):60-63.  

    12. [12]

      WANG Jiaming. Production Technology and Technical Progress of Polyimide Fiber[J]. Gansu Pet Chem Ind, 2011(4):11-14.  

    13. [13]

      Niu H, Huang M, Qi S. High-Performance Copolyimide Fibers Containing Quinazolinone Moiety:Preparation, Structure and Properties[J]. Polymer, 2013,54(6):1700-1708. doi: 10.1016/j.polymer.2013.01.047

    14. [14]

      Hiroshi I, Taro I, Tsutomu T. Polymide Super-Fiber from Soluble Polymide[J]. Photopolym Sci Tech, 2013,26:291-295. doi: 10.2494/photopolymer.26.291

    15. [15]

      Neuber C, Schmidt H W, Giesa R. Polyimide Fibers Obtained by Spinning Lyotropic Solutions of Rigid-Rod Aromatic Poly(amic ethyl ester)s[J]. Macromol Mater Eng, 2010,291(11):1315-1326.  

    16. [16]

      Jones M G, Lara-Curzio E, Kopper A. The Lateral Deformation of Cross-Linkable PPXTA Fibres[J]. J Mater Sci, 1997,32(11):2855-2871. doi: 10.1023/A:1018672400459

    17. [17]

      Zakharova I M, Zavadskii A E. Structural Changes in Armos Fibre as a Result of Heat Treatment in Different Conditions[J]. Fibre Chem, 2008,40(5):438-440. doi: 10.1007/s10692-009-9082-5

    18. [18]

      Zavadskii A E. Analysis of the Orientation of Supramolecular Structures in Feribs by the Method of X-Ray Diffractomery[J]. Fibre Chem, 2011,43(3):263-266. doi: 10.1007/s10692-011-9345-9

    19. [19]

      Downing J W, Newell J A. Characterization of Structural Changes in Thermally Enhanced Kevlar-29 Fiber[J]. J Appl Polym Sci, 2004,91(1):417-424. doi: 10.1002/app.13021

    20. [20]

      Zhuang Y, Liu X, Gu Y. Molecular Packing and Properties of Poly(benzoxazole-benzimidazole-imide) Copolymers[J]. Polym Chem, 2012,3(6):1517-1525. doi: 10.1039/c2py20074k

    21. [21]

      Aram E, Mehdipour-Ataei S. Preparation of Thermally Stable, Low Dielectric Constant, Pyridine-Based Polyimide and Related Nanofoams[J]. J Appl Polym Sci, 2013,128(6):4387-4394. doi: 10.1002/app.38687

    22. [22]

      Lei R, Kang C, Huang Y. Novel Sulfonated Polyimide Ionomers by Incorporating Pyridine Functional Group in the Polymer Backbone[J]. J Appl Polym Sci, 2009,114(5):3190-3197. doi: 10.1002/app.30929

    23. [23]

      Xia A, Lv G, Guo H. Syntheses and Properties of Novel Polyimides Derived from 2-(4-Aminophenyl)-5-aminopyrimidine[J]. J Appl Polym Sci, 2006,102(6):5871-5876. doi: 10.1002/app.24988

    24. [24]

      Banihashemi A, Abdolmaleki A. Novel Aromatic Polyimides Derived from Benzofuro[2, 3-b]Benzofuran-2, 3, 8, 9-Tetracarboxylic Dianhydride(BBTDA)[J]. Eur Polym J, 2004,40(8):1629-1635. doi: 10.1016/j.eurpolymj.2004.03.016

    25. [25]

      Chang J, Niu H, He M. Structure-Property Relationship of Polyimide Fibers Containing Ether Groups[J]. Appl Polym Sci, 2015,132(34)42474.  

    26. [26]

      Yin C, Dong J, Zhang D. Enhanced Mechanical and Hydrophobic Properties of Polyimide Fibers Containing Benzimidazole and Benzoxazole Units[J]. Eur Polym J, 2015,67:88-98. doi: 10.1016/j.eurpolymj.2015.03.028

    27. [27]

      Gao G Q, Dong L, Liu X. Structure and Properties of Novel PMDA/ODA/PABZ Polyimide Fibers[J]. Polym Eng Sci, 2010,48(5):912-917.  

  • 加载中
    1. [1]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    2. [2]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    3. [3]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    4. [4]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    5. [5]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    6. [6]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    9. [9]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    10. [10]

      Yaofeng Yuan Keyin Ye Chunfa Xu Hong Yan Yuanming Li . Fostering an International Perspective in Postgraduate Student Teaching: A Case Study of the Organic Structure Analysis Course. University Chemistry, 2024, 39(6): 145-150. doi: 10.3866/PKU.DXHX202402024

    11. [11]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    12. [12]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    13. [13]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    14. [14]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    15. [15]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    16. [16]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    17. [17]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    18. [18]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    19. [19]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

    20. [20]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

Metrics
  • PDF Downloads(10)
  • Abstract views(1024)
  • HTML views(360)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return