Citation: MA Mingguang, WEI Yunxia. Fabrication of Solid Phase Microextraction Fibers of Titanium Wires and Its Application[J]. Chinese Journal of Applied Chemistry, ;2020, 37(2): 218-226. doi: 10.11944/j.issn.1000-0518.2020.02.190235 shu

Fabrication of Solid Phase Microextraction Fibers of Titanium Wires and Its Application

  • Corresponding author: WEI Yunxia, weiyx07@lzu.edu.cn
  • Received Date: 3 September 2019
    Revised Date: 17 October 2019
    Accepted Date: 20 November 2019

    Fund Project: Supported by the Science and Technology Program of Gansu Province(No.18JR3RA219), and the Ph.D. Research Initiation Fund of Lanzhou City College(No.LZCU-BS2018-29)the Ph.D. Research Initiation Fund of Lanzhou City College LZCU-BS2018-29the Science and Technology Program of Gansu Province 18JR3RA219

Figures(6)

  • In this article, solid phase microextraction (SPME) fibers were assembled by in situ anodization on the surface of titanium wire with a constant voltage and anodization time. Effect of the electrolyte solutions of different concentrations (concentration of NH4F and ethylene glycol) and electrolysis time on the formation and size of TiO2 nanotubes (TiO2NTs) was investigated. TiO2NTs arrays were arranged with the wall thickness of 25 nm and the pore diameter of 100 nm in ethylene glycol and water (volume ratio 1:1) containing 0.5% mass fraction of NH4F at 20 V for 30 min at 25℃. Development of titanium dioxide nanotube array as a fiber coating for solid-phase microextraction coupled to high performance liquid chromatography for sensitive determination of polycyclic aromatic hydrocarbons (PAHs) in water. Under the optimized SPME conditions, this method has a higher sensitivity, wider linear range, better selectivity and repetition, and was easier to operate. The proposed method was successfully applied to the preconcentration and determination of target PAHs in river water and wastewater samples with satisfactory analytical results.
  • 加载中
    1. [1]

      Gong D, Grimes C A, Varghese O K. Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation[J]. J Mater Res, 2001,16(12):3331-3334. doi: 10.1557/JMR.2001.0457

    2. [2]

      Sun M, Feng J J, Qiu H M. CNT-TiO2 Coating Bonded onto Stainless Steel Wire as a Novel Solid-Phase Microextraction Fiber[J]. Talanta, 2013,114(4):60-65.  

    3. [3]

      García-Valverde M T, Lucena R, Cárdenas S. Titanium-Dioxide Nanotubes as Sorbents in (micro)Extraction Techniques[J]. Trends Anal Chem, 2014,62:37-45. doi: 10.1016/j.trac.2014.06.015

    4. [4]

      LI Zhen, LIU Hanmeng, YAO Zhixia. Preparation and Characterization of Titanium Dioxide Nanotube Array/Titanium pH Electrode[J]. Chinese J Anal Chem, 2018,46(12):120-126.  

    5. [5]

      Liu X, Liu Z Q, Lu J L. Electrodeposition Preparation of Ag Nanoparticles Loaded TiO2 Nanotube Arrays with Enhanced Photocatalytic Performance[J]. Appl Surf Sci, 2014,288(1):513-517.  

    6. [6]

      MAO Yulu, ZHANG Xi, XU Mai. Preparation of Ti/TiO2 Nanotube Arrays/PbO2-Pr Electrode and Its Application in Electrocatalytic Degradation of Organic Wastewater[J]. Chinese J Appl Chem, 2018,35(5):582-588.  

    7. [7]

      Cabanas-Polo S, Boccaccini A R. Electrophoretic Deposition of Nanoscale TiO2:Technology and Applications[J]. J Eur Ceram Soc, 2015,36(2):265-283.  

    8. [8]

      Madichie C, Greenway G M, McCreedy T. The Effects of Surfactants on the Analysis of Organic Pollutants in Natural Waters[J]. Anal Chim Acta, 1999,392(1):39-46.  

    9. [9]

      Tsai P J, Shieh H Y, Lee W J. Characterization of PAHs in the Atmosphere of Carbon Black Manufacturing Workplaces[J]. J Hazard Mater, 2002,91(91):25-42.  

    10. [10]

      Wenzl T, Simon R, Kleiner J. Analytical Methods for Polycyclic Aromatic Hydrocarbons(PAHs) in Food and the Environment Needed for New Food Legislation in the European Union[J]. Trends Anal Chem, 2006,25(7):716-725. doi: 10.1016/j.trac.2006.05.010

    11. [11]

      Riddle S G, Robert M A, Jakober C A. Size Distribution of Trace Organic Species Emitted from Light-Duty Gasoline Vehicles[J]. Environ Sci Technol, 2007,41(21):7464-7471. doi: 10.1021/es070153n

    12. [12]

      Zencak Z, Klanova J, Holoubek I. Source Apportionment of Atmospheric PAHs in the Western Balkans by Natural Abundance Radiocarbon Analysis[J]. Environ Sci Technol, 2007,41(11):3850-3855. doi: 10.1021/es0628957

    13. [13]

      Zhou Y Y, Yan X P, Kim K N. Exploration of Coordination Polymer as Sorbent for flow Injection Solid-Phase Extraction On-line Coupled with High-Performance Liquid Chromatography for Determination of Polycyclic Aromatic Hydrocarbons in Environmental Materials[J]. J Chromatogr A, 2006,1116(1):172-178.  

    14. [14]

      Li K, Li H F, Liu L B. Solid-Phase Extraction with C30 Bonded Silica for Analysis of Polycyclic Aromatic Hydrocarbons in Airborne Particulate Matters by Gas Chromatography-Mass Spectrometry[J]. J Chromatogr A, 2007,1154(1/2):74-80.  

    15. [15]

      García-Falcón M S, Pérez-Lamela M, Simal-Gándara J. Comparison of Strategies for Extraction of High Molecular Weight Polycyclic Aromatic Hydrocarbons from Drinking Waters[J]. J Agric Food Chem, 2004,52(23):6897-6903. doi: 10.1021/jf049385l

    16. [16]

      Ishizaki A, Saito K, Hanioka N. Determination of Polycyclic Aromatic Hydrocarbons in Food Samples by Automated On-line In-tube Solid-Phase Microextraction Coupled with High-Performance Liquid Chromatography-Fluorescence Detection[J]. J Chromatogr A, 2010,1217(35):5555-5563. doi: 10.1016/j.chroma.2010.06.068

    17. [17]

      Burkhardt M R, Zaugg S D, Burbank T L. Pressurized Liquid Extraction Using Water/Isopropanol Coupled with Solid-Phase Extraction Clean up for Semivolatile Organic Compounds, Polycyclic Aromatic Hydrocarbons(PAH), and Alkylate PAH Homolog Groups in Sediment[J]. Anal Chim Acta, 2005,549(1/2):104-116.  

    18. [18]

      Hartonen K, Bøwadt S, Dybdahl H P. Nordic Laboratory Intercomparison of Supercritical Fluid Extraction for the Determination of Total Petroleum Hydrocarbon, Polychlorinated Biphenyls and Polycyclic Aromatic Hydrocarbons in Soil[J]. J Chromatogr A, 2002,958(1/2):239-248.  

    19. [19]

      Macak J M, Hildebrand H, Marten-Jahns U. Mechanistic Aspects and Growth of Large Diameter Self-organized TiO2 Nanotubes[J]. J Electroanal Chem, 2008,621(2):254-266. doi: 10.1016/j.jelechem.2008.01.005

    20. [20]

      Macak J M, Gong B G, Hueppe M. Filling of TiO2 Nanotubes by Self-doping and Electrodeposition[J]. Adv Mater, 2007,19(19):3027-3031. doi: 10.1002/adma.200602549

    21. [21]

      Valota A, LeClere D J, Skeldon P. Influence of Water Content on Nanotubular Anodic Titania Formed in Fluoride/Glycerol Electrolytes[J]. Electrochim Acta, 2009,54(15):4321-4327.  

    22. [22]

      Boyd-Boland A A, Pawliszyn J B. Solid-Phase Microextraction of Nitrogen-Containing Herbicides[J]. J Chromatogr A, 1995,704(1):163-172. doi: 10.1016/0021-9673(95)00151-C

  • 加载中
    1. [1]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    2. [2]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    3. [3]

      Shunliu Deng Haifeng Su Yaxian Zhu Yuzhi Wang Yuhua Weng Zhaobin Chen Shunü Peng Yinyun Lü Xinyi Hong Yiru Wang Xiaozhen Huang Zhimin Lin Lansun Zheng . Course Ideological and Political Design for Self-Building Experiments of Scientific Instruments: Taking the Construction, Debugging, and Application of Teaching Mass Spectrometer as an Example. University Chemistry, 2024, 39(2): 127-132. doi: 10.3866/PKU.DXHX202308002

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    9. [9]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    10. [10]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    11. [11]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    12. [12]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    13. [13]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    14. [14]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    15. [15]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    18. [18]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

    19. [19]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    20. [20]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

Metrics
  • PDF Downloads(0)
  • Abstract views(363)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return