Fabrication of Solid Phase Microextraction Fibers of Titanium Wires and Its Application
- Corresponding author: WEI Yunxia, weiyx07@lzu.edu.cn
Citation:
MA Mingguang, WEI Yunxia. Fabrication of Solid Phase Microextraction Fibers of Titanium Wires and Its Application[J]. Chinese Journal of Applied Chemistry,
;2020, 37(2): 218-226.
doi:
10.11944/j.issn.1000-0518.2020.02.190235
Gong D, Grimes C A, Varghese O K. Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation[J]. J Mater Res, 2001,16(12):3331-3334. doi: 10.1557/JMR.2001.0457
Sun M, Feng J J, Qiu H M. CNT-TiO2 Coating Bonded onto Stainless Steel Wire as a Novel Solid-Phase Microextraction Fiber[J]. Talanta, 2013,114(4):60-65.
García-Valverde M T, Lucena R, Cárdenas S. Titanium-Dioxide Nanotubes as Sorbents in (micro)Extraction Techniques[J]. Trends Anal Chem, 2014,62:37-45. doi: 10.1016/j.trac.2014.06.015
LI Zhen, LIU Hanmeng, YAO Zhixia. Preparation and Characterization of Titanium Dioxide Nanotube Array/Titanium pH Electrode[J]. Chinese J Anal Chem, 2018,46(12):120-126.
Liu X, Liu Z Q, Lu J L. Electrodeposition Preparation of Ag Nanoparticles Loaded TiO2 Nanotube Arrays with Enhanced Photocatalytic Performance[J]. Appl Surf Sci, 2014,288(1):513-517.
MAO Yulu, ZHANG Xi, XU Mai. Preparation of Ti/TiO2 Nanotube Arrays/PbO2-Pr Electrode and Its Application in Electrocatalytic Degradation of Organic Wastewater[J]. Chinese J Appl Chem, 2018,35(5):582-588.
Cabanas-Polo S, Boccaccini A R. Electrophoretic Deposition of Nanoscale TiO2:Technology and Applications[J]. J Eur Ceram Soc, 2015,36(2):265-283.
Madichie C, Greenway G M, McCreedy T. The Effects of Surfactants on the Analysis of Organic Pollutants in Natural Waters[J]. Anal Chim Acta, 1999,392(1):39-46.
Tsai P J, Shieh H Y, Lee W J. Characterization of PAHs in the Atmosphere of Carbon Black Manufacturing Workplaces[J]. J Hazard Mater, 2002,91(91):25-42.
Wenzl T, Simon R, Kleiner J. Analytical Methods for Polycyclic Aromatic Hydrocarbons(PAHs) in Food and the Environment Needed for New Food Legislation in the European Union[J]. Trends Anal Chem, 2006,25(7):716-725. doi: 10.1016/j.trac.2006.05.010
Riddle S G, Robert M A, Jakober C A. Size Distribution of Trace Organic Species Emitted from Light-Duty Gasoline Vehicles[J]. Environ Sci Technol, 2007,41(21):7464-7471. doi: 10.1021/es070153n
Zencak Z, Klanova J, Holoubek I. Source Apportionment of Atmospheric PAHs in the Western Balkans by Natural Abundance Radiocarbon Analysis[J]. Environ Sci Technol, 2007,41(11):3850-3855. doi: 10.1021/es0628957
Zhou Y Y, Yan X P, Kim K N. Exploration of Coordination Polymer as Sorbent for flow Injection Solid-Phase Extraction On-line Coupled with High-Performance Liquid Chromatography for Determination of Polycyclic Aromatic Hydrocarbons in Environmental Materials[J]. J Chromatogr A, 2006,1116(1):172-178.
Li K, Li H F, Liu L B. Solid-Phase Extraction with C30 Bonded Silica for Analysis of Polycyclic Aromatic Hydrocarbons in Airborne Particulate Matters by Gas Chromatography-Mass Spectrometry[J]. J Chromatogr A, 2007,1154(1/2):74-80.
García-Falcón M S, Pérez-Lamela M, Simal-Gándara J. Comparison of Strategies for Extraction of High Molecular Weight Polycyclic Aromatic Hydrocarbons from Drinking Waters[J]. J Agric Food Chem, 2004,52(23):6897-6903. doi: 10.1021/jf049385l
Ishizaki A, Saito K, Hanioka N. Determination of Polycyclic Aromatic Hydrocarbons in Food Samples by Automated On-line In-tube Solid-Phase Microextraction Coupled with High-Performance Liquid Chromatography-Fluorescence Detection[J]. J Chromatogr A, 2010,1217(35):5555-5563. doi: 10.1016/j.chroma.2010.06.068
Burkhardt M R, Zaugg S D, Burbank T L. Pressurized Liquid Extraction Using Water/Isopropanol Coupled with Solid-Phase Extraction Clean up for Semivolatile Organic Compounds, Polycyclic Aromatic Hydrocarbons(PAH), and Alkylate PAH Homolog Groups in Sediment[J]. Anal Chim Acta, 2005,549(1/2):104-116.
Hartonen K, Bøwadt S, Dybdahl H P. Nordic Laboratory Intercomparison of Supercritical Fluid Extraction for the Determination of Total Petroleum Hydrocarbon, Polychlorinated Biphenyls and Polycyclic Aromatic Hydrocarbons in Soil[J]. J Chromatogr A, 2002,958(1/2):239-248.
Macak J M, Hildebrand H, Marten-Jahns U. Mechanistic Aspects and Growth of Large Diameter Self-organized TiO2 Nanotubes[J]. J Electroanal Chem, 2008,621(2):254-266. doi: 10.1016/j.jelechem.2008.01.005
Macak J M, Gong B G, Hueppe M. Filling of TiO2 Nanotubes by Self-doping and Electrodeposition[J]. Adv Mater, 2007,19(19):3027-3031. doi: 10.1002/adma.200602549
Valota A, LeClere D J, Skeldon P. Influence of Water Content on Nanotubular Anodic Titania Formed in Fluoride/Glycerol Electrolytes[J]. Electrochim Acta, 2009,54(15):4321-4327.
Boyd-Boland A A, Pawliszyn J B. Solid-Phase Microextraction of Nitrogen-Containing Herbicides[J]. J Chromatogr A, 1995,704(1):163-172. doi: 10.1016/0021-9673(95)00151-C
Zhiwen HUANG , Qi LIU , Jianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184
Xue Wu , Yupeng Liu , Bingzhe Wang , Lingyun Li , Zhenjian Li , Qingcheng Wang , Quansheng Cheng , Guichuan Xing , Songnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
Shunliu Deng , Haifeng Su , Yaxian Zhu , Yuzhi Wang , Yuhua Weng , Zhaobin Chen , Shunü Peng , Yinyun Lü , Xinyi Hong , Yiru Wang , Xiaozhen Huang , Zhimin Lin , Lansun Zheng . Course Ideological and Political Design for Self-Building Experiments of Scientific Instruments: Taking the Construction, Debugging, and Application of Teaching Mass Spectrometer as an Example. University Chemistry, 2024, 39(2): 127-132. doi: 10.3866/PKU.DXHX202308002
Renjie Xue , Chao Ma , Jing He , Xuechao Li , Yanning Tang , Lifeng Chi , Haiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
Wenjian Zhang , Mengxin Fan , Wenwen Fei , Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
Conghao Shi , Ranran Wang , Juli Jiang , Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
w(NH4F)/%:A.0.1; B.0.25; C.0.5; D.1.0; E.2.5; F.5.0 Electrochemical anodization condition:25 ℃, 20 V, 30 min
w(NH4F)/%:A.0.1; B.0.25; C.0.5; D.1.0; E.2.5; F.5.0 Electrochemical anodization condition:25 ℃, 20 V, 30 min; Electrolyte composition:φ(ethylene glycol)=50%
Electrochemical anodization condition:25 ℃, 20 V, 30 min; Electrolyte composition:w(NH4F)=0.50%; φ(ethylene glycol)/%:A.20; B.50; C.60; D. 80
Direct injection(a), SPME-HPLC with TiO2NTs/Ti fiber(b), SPME-HPLC with TiO2NTs/Ti fiber spiked wastewater at 5 μg/L(c) and at 10 μg/L(d)