Citation: GONG Hui, KANG Yu, ZHANG Rong, REN Guodong, HOU Xiaoyu, ZHANG Min, LI Lihong, LIU Wen, WANG Haojiang, DIAO Haipeng. Preparation of Nitrogen-Doped Carbon Dots for Highly Sensitive Detection of Amoxicillin[J]. Chinese Journal of Applied Chemistry, ;2020, 37(2): 227-234. doi: 10.11944/j.issn.1000-0518.2020.02.190226 shu

Preparation of Nitrogen-Doped Carbon Dots for Highly Sensitive Detection of Amoxicillin

  • Corresponding author: DIAO Haipeng, diaohp@sxmu.edu.cn
  • Received Date: 23 August 2019
    Revised Date: 16 October 2019
    Accepted Date: 5 November 2019

    Fund Project: the Youth Science Foundation of Shanxi Province 201701D221064the Key Research and Development Projects of Shanxi Province 201703D321015-2Supported by the National Natural Science Foundation of China(No.21705104), the Key Research and Development Projects of Shanxi Province(No.201703D321015-2), and the Youth Science Foundation of Shanxi Province(No.201701D221064)the National Natural Science Foundation of China 21705104

Figures(10)

  • In this paper, the nitrogen-doped carbon dots (NCDs) were synthesized using the natural material dendrobe as the raw material by one-step hydrothermal method. The synthesized carbon dots were characterized by transmission electron microscopy(TEM), X-ray photoelectron spectroscopy(XPS), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible(UV-Vis) absorption spectroscopy and photoluminescence spectroscopy (PL). The experiment results show that NCDs are spherical or quasi-spherical, uniformly dispersed with the size ranges from 1 to 5 nm, which can emit strong blue fluorescence. The surface of the synthesized NCDs is rich in water-soluble groups such as COOH, OH and NH2. The optimal excitation and emission wavelengths of NCDs are 350 and 435 nm, respectively. Meanwhile, the fluorescence emission has good luminescence stability. The fluorescence quantum yield of the carbon dots is as high as 29.19%. The effects of different substances on the fluorescence of NCDs were measured in a buffer solution with pH=7.4. Under the same conditions, only amoxicillin is able to significantly quench the fluorescence of NCDs, indicating the synthesized NCDs can selectively interact with amoxicillin. A sensitive sensor was constructed for detecting amoxicillin by changing the fluorescence intensity of carbon dots. The linear detection range for amoxicillin is from 2.6 to 30 μmol/L and the detection limit is 0.15 μmol/L.
  • 加载中
    1. [1]

      De Baere S, De Backer P. Quantitative Determination of Amoxicillin in Animal Feed Using Liquid Chromatography with Tandem Mass Spectrometric Detection[J]. Anal Chim Acta, 2007,586(1/2):319-325.  

    2. [2]

      Bergamini M F, Teixeira M F S, Dockal E R. Evaluation of Different Voltammetric Techniques in the Determination of Amoxicillin Using a Carbon Paste Electrode Modified with[N, N'-ethylenebis(salicylideneaminato)] Oxovanadium(Ⅳ)[J]. J Electrochem Soc, 2006,153(5):E94-E98.  

    3. [3]

      Shah K, Hassan E, Ahmed F. Novel Fluorene-Based Supramolecular Sensor for Selective Detection of Amoxicillin in Water and Blood[J]. Ecotox Environ Safe, 2017,141:25-29. doi: 10.1016/j.ecoenv.2017.03.003

    4. [4]

      Cohen M L. Epidemiology of Drug Resistance:Implications for a Post-antimicrobial Era[J]. Science, 1992,257(5073):1050-1055. doi: 10.1126/science.257.5073.1050

    5. [5]

      Gonzales R, Bartlett J G, Besser R E. Principles of Appropriate Antibiotic Use for Treatment of Acute Respiratory Tract Infections in Adults:Background, Specific Aims, and Methods[J]. Ann Emerg Med, 2001,37(6):690-697. doi: 10.1067/S0196-0644(01)70087-X

    6. [6]

      Shangguan J, Huang J, He D. Highly Fe3+-Selective Fluorescent Nanoprobe Based on Ultrabright N/P Codoped Carbon Dots and Its Application in Biological Samples[J]. Anal Chem, 2017,89(14):7477-7484. doi: 10.1021/acs.analchem.7b01053

    7. [7]

      Tan J, Zou R, Zhang J. Large-scale Synthesis of N-Doped Carbon Quantum Dots and Their Phosphorescence Properties in a Polyurethane Matrix[J]. Nanoscale, 2016,8(8):4742-4747. doi: 10.1039/C5NR08516K

    8. [8]

      Wang J, Qiu F, Wu H. Fabrication of Fluorescent Carbon Dots-Linked Isophorone Diisocyanate and β-Cyclodextrin for Detection of Chromium Ions[J]. Spectrochim Acta A, 2017,179:163-170. doi: 10.1016/j.saa.2017.02.031

    9. [9]

      HUANG Xiaomei, DENG Xiang. Preparation of New Photoluminescent Carbon Dots and Its Application in Hg2+ Detection[J]. Chinese J Appl Chem, 2019,36(5):603-610.  

    10. [10]

      Luo M, Hua Y, Liang Y. Synthesis of Novel β-cyclodextrin Functionalized S, N Codoped Carbon Dots for Selective Detection of Testosterone[J]. Biosens Bioelectron, 2017,98:195-201. doi: 10.1016/j.bios.2017.06.056

    11. [11]

      WANG Shiqi, TU Yufei, LIU Zhixiao. Microwave Synthesis of Nitrogen-Doped Carbon Dots and Its Application in Detection of Ferric Ions[J]. Chinese J Lumin, 2019,40(6):751-757.  

    12. [12]

      Eda G, Lin Y Y, Mattevi C. Blue Photoluminescence from Chemically Derived Graphene Oxide[J]. Adv Mater, 2010,22(4):505-509. doi: 10.1002/adma.200901996

    13. [13]

      Paredes J I, Villar-Rodil S, Martiínez-Alonso A. Graphene Oxide Dispersions in Organic Solvents[J]. Langmuir, 2008,24(19):10560-10564. doi: 10.1021/la801744a

    14. [14]

      Zhu S, Meng Q, Wang L. Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging[J]. Angew Chem Int Ed, 2013,52(14):3953-3957. doi: 10.1002/anie.201300519

    15. [15]

      Wei J, Zhang X, Sheng Y. Dual Functional Carbon Dots Derived from Cornflour via a Simple One-Pot Hydrothermal Route[J]. Mater Lett, 2014,123:107-111. doi: 10.1016/j.matlet.2014.02.090

    16. [16]

      Wu D, Huang X, Deng X. Preparation of Photoluminescent Carbon Nanodots by Traditional Chinese Medicine and Application as a Probe for Hg2+[J]. Anal Meth, 2013,5(12):3023-3027.  

    17. [17]

      Gedda G, Lee C Y, Lin Y C. Green Synthesis of Carbon Dots from Prawn Shells for Highly Selective and Sensitive Detection of Copper Ions[J]. Sens Actuators B-Chem, 2016,224:396-403. doi: 10.1016/j.snb.2015.09.065

    18. [18]

      Wei J, Shen J, Zhang X. Simple One-Step Synthesis of Water-Soluble Fluorescent Carbon Dots Derived from Paper Ash[J]. RSC Adv, 2013,3(32):13119-13122. doi: 10.1039/c3ra41751d

    19. [19]

      Chen Y, Wu Y, Weng B. Facile Synthesis of Nitrogen and Sulfur Co-doped Carbon Dots and Application for Fe(Ⅲ) Ions Detection and Cell Imaging[J]. Sens Actuators B-Chem, 2016,223:689-696. doi: 10.1016/j.snb.2015.09.081

  • 加载中
    1. [1]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    2. [2]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    3. [3]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    6. [6]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    7. [7]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    8. [8]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    9. [9]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    10. [10]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    11. [11]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    12. [12]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    13. [13]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    14. [14]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    15. [15]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    16. [16]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    17. [17]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    18. [18]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    19. [19]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    20. [20]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

Metrics
  • PDF Downloads(0)
  • Abstract views(316)
  • HTML views(69)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return