Citation: JIANG Xiaoxiao, ZHU Jinwen, LIAO Xiaofeng, YIN Weiwei, GAO Peng, YANG Changlin, WANG Feng. Synthesis of Oligo-L-Tyrosine via Bromelain[J]. Chinese Journal of Applied Chemistry, ;2020, 37(2): 175-181. doi: 10.11944/j.issn.1000-0518.2020.02.190224 shu

Synthesis of Oligo-L-Tyrosine via Bromelain

  • Corresponding author: WANG Feng, fwang@jiangnan.edu.cn
  • Received Date: 21 August 2019
    Revised Date: 1 November 2019
    Accepted Date: 4 November 2019

    Fund Project: the National Undergraduate Innovation and Entrepreneurship Training Program 201910295049Supported by the National Scholarship for Studying Abroad(No.201406795023), the Postgraduate Research and Practice Innovation Program of Jiangsu Province(No.SJCX18-0618), and the National Undergraduate Innovation and Entrepreneurship Training Program(No.201910295049)the Postgraduate Research and Practice Innovation Program of Jiangsu Province SJCX18-0618the National Scholarship for Studying Abroad 201406795023

Figures(12)

  • Herein, oligo-L-tyrosine (O-L-Try) was synthesized from L-tyrosine methyl ester with bromelain as the catalyst. The maximal value of O-L-Try yield reached 65% under the optimum reaction conditions of 0.8 U/mL of bromelain, volume fraction 7.5% of dimethyl sulfoxide(DMSO) in phosphate solution (pH=7.5, 0.2 mol/L) and 0.23 g/mL of L-tyrosine methyl ester at 50℃ for five hours.The structure of O-L-Try was characterized by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS), hydrogen nuclear magnetic resonance spectroscopy (1H NMR), Raman spectroscopy and Fourier transform infrared spectrometry (FTIR). The polymerization degree of O-L-Try is mainly 10 as measured by MALDI-TOF-MS. The average degree of polymerization of O-L-Try is 8 as determined by 1H NMR analysis. Raman spectroscopy shows that O-L-Try has the characteristic peaks at 1623 cm-1 (amide Ⅰ band), 1447 cm-1 (amide Ⅱ band), 1270 cm-1 (amide Ⅲ band) and 648 cm-1 (amide Ⅳ band).
  • 加载中
    1. [1]

      Fetsch C, Grossmann A, Holz L. Polypeptoids from N-Substituted Glycine N-Carboxyanhydrides:Hydrophilic, Hydrophobic, and Amphiphilic Polymers with Poisson Distribution[J]. Macromolecules, 2011,44(17):6746-6758. doi: 10.1021/ma201015y

    2. [2]

      XU Xu, WU Guoli, ZHANG Jie. Synthesis and Amphiphilic Property of Ethyleneglycol Functionalized Polyglutamate[J]. Acta Chim Sin, 2008,66(9):1102-1106. doi: 10.3321/j.issn:0567-7351.2008.09.016

    3. [3]

      Mallakpour S, Ayatollahi H, Sabzalian M R. Study on Biodegradability of Poly(amide-imide)s Containing N-Trimellitylimido-L-amino Acids and 3, 5-Diamino-N-(pyridin-3-yl) Benzamide Linkages[J]. Polym Sci Ser B, 2014,56(4):464-470. doi: 10.1134/S156009041404006X

    4. [4]

      Deming T J. Synthetic Polypeptides for Biomedical Applications[J]. Prog Polym Sci, 2007,32(8/9):858-875.  

    5. [5]

      Cai C, Lin J, Zhuang Z, et al. Ordering of Polypeptides in Liquid Crystals, Gels and Micelles[M]. Controlled Polymerization and Polymeric Structures:Springer, 2013:159-199.

    6. [6]

      Yoshimitsu H, Kanazawa A, Kanaoka S. Well-Defined Polymeric Ionic Liquids with an Upper Critical Solution Temperature in Water[J]. Macromolecules, 2012,45(23):9427-9434. doi: 10.1021/ma301746u

    7. [7]

      Wang F, Zhu J, Yan T. Amphiphilic Bromelain-Synthesized Oligo-Phenylalanine Grafted with Methoxypolyethylene Glycol Possessing Stabilizing Thermo-Responsive Emulsion Properties[J]. J Colloid Interface Sci, 2019,538:1-14. doi: 10.1016/j.jcis.2018.11.082

    8. [8]

      ZHAO Li, DING Jianxun, XIAO Chunsheng. Poly(L-glutamic acid) Microsphere:Preparation and Application in Oral Drug Controlled Release[J]. Acta Chim Sin, 2015,73:60-65.  

    9. [9]

      LIU Yanhua, HUANG Dengfa, ZHU Jinwen. Enzymatic Synthesis of L-Phenylalanine Polypeptide[J]. Chemistry, 2018,81(4):361-365.  

    10. [10]

      Vlakh E, Ananyan A, Zashikhina N. Preparation, Characterization, and Biological Evaluation of Poly(Glutamic acid)-b-Polyphenylalanine Polymersomes[J]. Polymers, 2016,8(6)212. doi: 10.3390/polym8060212

    11. [11]

      Wang Z, Yan Y, Wang Y. The Interaction Between CSE/H2S and the iNOS/NO-mediated Resveratrol/Poly(ethylene glycol)-Poly(phenylalanine) Complex Alleviates Intestinal Ischemia/Reperfusion Injuries in Diabetic Rats[J]. Biomed Pharmacother, 2019,112108736. doi: 10.1016/j.biopha.2019.108736

    12. [12]

      LIN Lin, GUO Zhaopei, CHEN Jie. Synthesis and Characterization of Polyphenylalanine Grafted Low Molecular Weight PEI as Efficient Gene Carriers[J]. Acta Polym Sin, 2017,2(2):321-328. doi: 10.11777/j.issn1000-3304.2017.16277

    13. [13]

      Patel M, Nakaji-Hirabayashi T, Matsumura K. Effect of Dual-drug-releasing Micelle-Hydrogel Composite on Wound Healing in Vivo in Full-Thickness Excision Wound Rat Model[J]. J Biomed Mater Res Part A, 2019,107(5):1094-1106. doi: 10.1002/jbm.a.36639

    14. [14]

      Gu X, Wei Y, Fan Q. cRGD-decorated Biodegradable Polytyrosine Nanoparticles for Robust Encapsulation and Targeted Delivery of Doxorubicin to Colorectal Cancer in Vivo[J]. J Controlled Release, 2019,301:110-118. doi: 10.1016/j.jconrel.2019.03.005

    15. [15]

      Gu X, Qiu M, Sun H. Polytyrosine Nanoparticles Enable Ultra-High Loading of Doxorubicin and Rapid Enzyme-Responsive Drug Release[J]. Biomater Sci, 2018,6(6):1526-1534. doi: 10.1039/C8BM00243F

    16. [16]

      Gao Y, Cranston R. Polytyrosine as an Electroactive Lebel for Signal Amplification in Electrochemical Immunosensors[J]. Anal Chim Acta, 2010,659(1):109-114.  

    17. [17]

      Eguílaz M, Gutierrez F, González-Domínguez J M. Single-Walled Carbon Nanotubes Covalently Functionalized with Polytyrosine:A New Material for the Development of NADH-Based Biosensors[J]. Biosens Bioelectron, 2016,86:308-314. doi: 10.1016/j.bios.2016.06.003

    18. [18]

      Stewart J M. Bradykinin in Solid-Phase Peptide Synthesis[J]. Int J Pept Res Ther, 2007,13(1/2):3-5.  

    19. [19]

      YU Shufang, GU Xin, WU Guolin. Preparation and pH-Sensitive Drug Delivery Study of mPEGpoly(Imidazole Propyl-Asparagine)-Poly(L-Alanine)[J]. Acta Chim Sin, 2012,70(2):177-182. doi: 10.3969/j.issn.0253-2409.2012.02.008

    20. [20]

      Lombard C, Saulnier J, Wallach J. Recent Trends in Protease-Catalyzed Peptide Synthesis[J]. Protein Pept Lett, 2005,12(7):621-629. doi: 10.2174/0929866054696118

    21. [21]

      Yu B, Zhang A, Zhang M. Current Status and Future Developments in Synthetic Peptides[J]. Curr Org Chem, 2018,22(20):1951-1958. doi: 10.2174/1385272822666181009151945

    22. [22]

      Tsuchiya K, Miyagi Y, Miyamoto T, et al. Synthesis of Polypeptides:Enzymatic Polymerization Towards Green Polymer Chemistry[M]. Singapore:Springer, 2019:233-265.

    23. [23]

      Ulijn R V, Baraga a B, Halling P J. Protease-Catalyzed Peptide Synthesis on Solid Support[J]. J Am Chem Soc, 2002,124(37):10988-10989. doi: 10.1021/ja026912d

    24. [24]

      Viswanathan K, Omorebokhae R, Li G. Protease-Catalyzed Oligomerization of Hydrophobic Amino Acid Ethyl Esters in Homogeneous Reaction Media Using L-Phenylalanine as a Model System[J]. Biomacromolecules, 2010,11(8):2152-2160. doi: 10.1021/bm100516x

    25. [25]

      Dabkowska A P, Foglia F, Lawrence M J. On the Solvation Structure of Dimethylsulfoxide/Water Around the Phosphatidylcholine Head Group in Solution[J]. J Chem Phys, 2011,135(22)225105. doi: 10.1063/1.3658382

    26. [26]

      Zhang L Q, Xu L, Yang X C. Lipase-Catalyzed Synthesis of Precursor Dipeptides of RGD in Aqueous Water-Miscible Organic Solvents[J]. Prep Biochem Biotechnol, 2003,33(1):1-12. doi: 10.1081/PB-120018365

    27. [27]

      Fukuoka T, Tachibana Y, Tonami H. Enzymatic Polymerization of Tyrosine Derivatives. Peroxidase- and Protease-Catalyzed Synthesis of Poly(tyrosine)s with Different Structures[J]. Biomacromolecules, 2002,3(4):768-774. doi: 10.1021/bm020016c

  • 加载中
    1. [1]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    2. [2]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    5. [5]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    6. [6]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    7. [7]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    10. [10]

      Feiyang Liu Liuhong Song Miaoyu Fu Zhi Zheng Gang Xie Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037

    11. [11]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    12. [12]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    13. [13]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    14. [14]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    15. [15]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    16. [16]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    17. [17]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    18. [18]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    19. [19]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    20. [20]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

Metrics
  • PDF Downloads(0)
  • Abstract views(600)
  • HTML views(108)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return