Citation: DONG Yuman, MENG Shixin, QU Fengmei, SUN Hejia, TANG Qiming, WANG Yaolei, MENG Tao. Microfluidic Droplets Flow for Urea Detection Based on Enzymatic Reaction in Aqueous Two-Phase System[J]. Chinese Journal of Applied Chemistry, ;2020, 37(2): 211-217. doi: 10.11944/j.issn.1000-0518.2020.02.190214 shu

Microfluidic Droplets Flow for Urea Detection Based on Enzymatic Reaction in Aqueous Two-Phase System

  • Corresponding author: MENG Tao, taomeng@swjtu.edu.cn
  • Received Date: 1 August 2019
    Revised Date: 11 October 2019
    Accepted Date: 14 November 2019

    Fund Project: Supported by the National Natural Science Foundation of China(No.21776230)the National Natural Science Foundation of China 21776230

Figures(6)

  • A simple and rapid microfluidic enzymatic reaction method was used to visualize the urea concentration. In the aqueous two-phase system (ATPS), ammonium carbonate produced by the enzymatic reaction discolors the neutral red indicator in droplets, and the color intensity of droplets is analyzed to determine the concentration of urea in the sample to be tested. The detection range can reach 0~50 mg/mL. The microfluidic ATPS droplet flow overcomes the challenge of low biocompatibility of traditional detection platforms based on oil-water droplet. Less consumption, extremely large specific surface area and micro-scale diffusion distance of droplet flow result in the high enzymatic reaction rate. The reaction rate is many times faster than that of traditional beaker method. The detection time is reduced to 20 s. The study aims to provide new ideas and reference for the rapid urea detection in the field of applied chemistry.
  • 加载中
    1. [1]

      Llopis Lorente A, Villalonga R, Marcos M D. A Versatile New Paradigm for the Design of Optical Nanosensors Based on Enzyme-Mediated Detachment of Labeled Reporters:The Example of Urea Detection[J]. Chem Eur J, 2019,25(14):3575-3581. doi: 10.1002/chem.201804706

    2. [2]

      Trivedi U B, Lakshminarayana D, Kothari I L. Potentiometric Biosensor for Urea Determination in Milk[J]. Sens Actuators B, 2009,140(1):260-266.  

    3. [3]

      WEI Yongfeng, MA Dongmei, LI Xiaohua. Chitosan Immobillized Urease and Analysis of Urea in Waste Water[J]. Chinese J Appl Chem, 2004,21(4):357-360. doi: 10.3969/j.issn.1000-0518.2004.04.007 

    4. [4]

      YANG Yadong. Comparison of Two Methods for Determination of Urea in Water-P-dimethylaminobenzaldehyde Colorimetric Method and Kjeldahl Method[J]. Chem Enterp Manage, 2015,34:201-201.  

    5. [5]

      WANG Tiejun, SHI Hanqin, HUI Jianming, et al. A Fast Method for Detecting the Content of Adulterated Urea in Milk: CN, 105466906A[P]. 2015-12-16(in Chinese).

    6. [6]

      HU Shenghua, LU Yunping, CHU Qingcui. Determination of Urea in Human Saliva by Capillary Electrophoresis with Electrochemical Detection[J]. J Instrum Anal, 2008,27(4):440-442. doi: 10.3969/j.issn.1004-4957.2008.04.025

    7. [7]

      GAO Shizhong, LV Jiefang, LV Yongchang. Rapid Qualitative Analysis of Urea and Bovine Urine in Milk[J]. China Dariy Ind, 1986,14(3):76-78.  

    8. [8]

      YANG Shuiyun, MA Xiaoming, XU Fan, et al. Preparation of Urea Test Paper in Dairy Product and Urea Detection Method: CN, 101398386[P]. 2009-04-01(in Chinese).

    9. [9]

      YU Dongwei, ZHAO Yuan, LIU Zhinan, et al. Method for Qualitative Detection of Urea in Milk: CN, 102539421A[P]. 2012-07-04(in Chinese).

    10. [10]

      Mogensen K B, Klank H, Kutter J P. Recent Developments in Detection for Microfluidic Systems[J]. Electrophoresis, 2004,25(21/22):3498-3512.

    11. [11]

      Whitesides G M. The Origins and the Future of Microfluidics[J]. Nature, 2006,442(7101):368-73. doi: 10.1038/nature05058

    12. [12]

      ZHANG Maojie, WANG Wei, JU Xiaojie. Research Progress on Controllable Fabrication of Functional Microfibers from Microfluidic Jet Templates[J]. Chinese J Appl Chem, 2017,34(11):1240-1249. doi: 10.11944/j.issn.1000-0518.2017.11.170264 

    13. [13]

      Piao Y, Han D J, Azad M R. Enzyme Incorporated Microfluidic Device for in-situ Glucose Detection in Water-in-Air Microdroplets[J]. Biosens Bioelectron, 2015,65:220-225. doi: 10.1016/j.bios.2014.10.032

    14. [14]

      Wang J, Chatrathi M, Ibañez A. Glucose Biochip:Dual Analyte Response in Connection to Two Pre-column Enzymatic Reactions[J]. Analyst, 2001,126(8):1203-1206. doi: 10.1039/b103193g

    15. [15]

      Juul S, Nielsen C J F, Labouriau R. Droplet Microfluidics Platform for Highly Sensitive and Quantitative Detection of Malaria-Causing Plasmodium Parasites Based on Enzyme Activity Measurement[J]. ACS Nano, 2012,6(12):10676-10683. doi: 10.1021/nn3038594

    16. [16]

      Agresti J J, Antipov E, Abate A R. Ultrahigh-Throughput Screening in Drop-Based Microfluidics for Directed Evolution[J]. Proc Natl Acad Sci USA, 2010,107(9):4004-4009. doi: 10.1073/pnas.0910781107

    17. [17]

      Liu H T, Wang H, Wei W B. A Microfluidic Strategy for Controllable Generation of Water-In-Water Droplets as Biocompatible Microcarriers[J]. Small, 2018,14(36):1801095-1801099. doi: 10.1002/smll.201801095

    18. [18]

      Meng S X, Xue L H, Xie C Y. Enhanced Enzymatic Reaction by Aqueous Two-Phase Systems Using Parallel-Laminar Flow in a Double Y-Branched Microfluidic Device[J]. Chem Eng J, 2018,335:392-400. doi: 10.1016/j.cej.2017.10.085

    19. [19]

      Moon B, Jones S G, Hwang D K. Microfluidic Generation of Aqueous Two-Phase System(ATPS) Droplets by Controlled Pulsating Inlet Pressures[J]. Lab Chip, 2015,15(11):2437-2444. doi: 10.1039/C5LC00217F

    20. [20]

      Mak S Y, Chao Y, Shum H C. The Dripping-to-Jetting Transition in a Co-axial Flow of Aqueous Two-Phase Systems with Low Interfacial Tension[J]. RSC Adv, 2017,7(6):3287-3292. doi: 10.1039/C6RA26556A

    21. [21]

      Mastiani M, Seo S, Jimenez S. Flow Regime Mapping of Aqueous Two-Phase System Droplets in Flow-Focusing Geometries[J]. Colloids Surf A, 2017,531:111-120. doi: 10.1016/j.colsurfa.2017.07.083

    22. [22]

      HJ 634, Soil-Determination of Ammonium, Nitrite and Nitrate by Extraction with Potassium Chloride Solution-Spectrophotometric Methods[S]. China Environmental Science Press, 2012(in Chinese).

  • 加载中
    1. [1]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    2. [2]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    3. [3]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    4. [4]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    5. [5]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    6. [6]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    7. [7]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    8. [8]

      Nana Wang Gaosheng Zhang Huosheng Li Tangfu Xiao . Discussion on the Teaching Reform of Environmental Functional Materials within the Context of “Double First-Class” Initiative: Emphasizing the Integration of Industry, Academia, Research, and Application. University Chemistry, 2024, 39(6): 137-144. doi: 10.3866/PKU.DXHX202312010

    9. [9]

      Peifeng Su Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087

    10. [10]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    11. [11]

      Jiali Lin Shuting Wu Cheng Zheng Zian Lin Qiaohua Wei Shoutian Zheng . Construction and Practice of National Chemical Experiment Teaching Demonstration Center in Local Universities under the Background of “Double First-Class”. University Chemistry, 2024, 39(7): 129-139. doi: 10.12461/PKU.DXHX202405043

    12. [12]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    13. [13]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    14. [14]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    17. [17]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    18. [18]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    19. [19]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    20. [20]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

Metrics
  • PDF Downloads(1)
  • Abstract views(407)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return