Citation: GAO Jia, SONG Fujiao, CHENG Wenqiang, GE Yan, XU Qi. Catalytic Performance of Pd-Cu/ZrO2 Catalyst for Hydrogenation of Carbon Dioxide to Methanol[J]. Chinese Journal of Applied Chemistry, ;2020, 37(2): 160-167. doi: 10.11944/j.issn.1000-0518.2020.02.190211 shu

Catalytic Performance of Pd-Cu/ZrO2 Catalyst for Hydrogenation of Carbon Dioxide to Methanol

  • Corresponding author: XU Qi, ycxqsteve@163.com
  • Received Date: 31 July 2019
    Revised Date: 30 September 2019
    Accepted Date: 4 November 2019

    Fund Project: the National Natural Science Foundation of China 21802119Supported by the National Natural Science Foundation of China(No.21802119)

Figures(6)

  • Cu/ZrO2 catalysts with the Cu/Zr molar ratio of 1:1, 1:2, 1:4 and 1:8 were prepared by the sol-gel method. When n(Cu):n(Zr)=1:4, a high CO2 conversion (8.0%) with methanol selectivity of 59.5% was achieved. To increase CO2 conversion and CH3OH selectivity, Pd-Cu/ZrO2 catalyst with the Cu/Zr molar ratio of 1:4 and 1% mass fraction of Pd was synthesized by the impregnation method. The results showed that CO2 conversion and CH3OH yield over the Pd-Cu/ZrO2 catalyst were 40.0% and 80.9% higher than that over the Cu/ZrO2 catalyst at 250℃, 2 MPa, 12000 mL/(g·h) and V(H2):V(CO2)=3:1. Powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy analysis (FT-IR), N2 adsorption-desorption (BET), X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction of H2(H2-TPR) results indicated that addition of Pd improved the dispersion and surface area of the catalyst. The strong interaction between Pd and Cu species leads to the shift of Cu2p to low binding energies and decreases the catalyst reduction temperature, which exhibits high catalytic performance for hydrogenation of CO2.
  • 加载中
    1. [1]

      Bao J, Yang G H, Yoneyama Y. Significant Advances in C1 Catalysis:Highly Efficient Catalysts and Catalytic Reactions[J]. ACS Catal, 2019,9(4):3026-3053. doi: 10.1021/acscatal.8b03924

    2. [2]

      DING Fanshu, NIE Xiaowa, LIU Min. Research Progress in Catalytic Conversion of Carbon Dioxide to C2+Hydrocarbons over Fe-Based Catalysts[J]. Chinese J Appl Chem, 2016,33(2):123-132.  

    3. [3]

      LI Qingxun, WANG Zongbao, LOU Shujie. Research Progress in Methanol Production from Carbon Dioxide Hydrogenation[J]. Mod Chem Ind, 2019,39(5):19-23.  

    4. [4]

      Cassone G, Pietrucci F, Saija F. One-Step Electric-Field Driven Methane and Formaldehyde Synthesis from Liquid Methanol[J]. Chem Sci, 2017,8(3):2329-2336. doi: 10.1039/C6SC04269D

    5. [5]

      Qian Q L, Zhang J J, Cui M. Synthesis of Acetic Acid via Methanol Hydrocarboxylation with CO2 and H2[J]. Nat Commun, 2016,711481. doi: 10.1038/ncomms11481

    6. [6]

      Chu Z, Chen H B, Yu Y. Surfactant-Assisted Preparation of Cu/ZnO/Al2O3 Catalyst for Methanol Synthesis from Syngas[J]. J Mol Catal A-Chem, 2013,366:48-53. doi: 10.1016/j.molcata.2012.09.007

    7. [7]

      Wu J G, Saito M, Takeuchi M. The Stability of Cu/ZnO-Based Catalysts in Methanol Synthesis from a CO2-Rich Feed and from a CO-Rich Feed[J]. Appl Catal A-Gen, 2001,218(1/2):235-240.  

    8. [8]

      ZUO Yizan, ZHANG Qiang, HAN Minghan. The Sintering of a Cu-Based Methanol Synthesis Catalyst[J]. Chinese J Catal, 2009,30(7):624-630. doi: 10.3321/j.issn:0253-9837.2009.07.008

    9. [9]

      Oliver M, Antonio J M, Cecilia M. Indium Oxide as a Superior Catalyst for Methanol Synthesis by CO2 Hydrogenation[J]. Angew Chem Int Ed, 2016,55(21):6261-6265. doi: 10.1002/anie.201600943

    10. [10]

      Samson K, Sliwa M, Socha R P. Influence of ZrO2 Structure and Copper Electronic State on Activity of Cu/ZrO2 Catalysts in Methanol Synthesis from CO2[J]. ACS Catal, 2014,4(10):3730-3741. doi: 10.1021/cs500979c

    11. [11]

      Yao L B, Shen X C, Pan Y B. Synergy Between Active Sites of Cu-In-Zr-O Catalyst in CO2 Hydrogenation to Methanol[J]. J Catal, 2019,372:74-85. doi: 10.1016/j.jcat.2019.02.021

    12. [12]

      Chen D W, Mao D S, Xiao J. CO2 Hydrogenation to Methanol over CuO-ZnO-TiO2-ZrO2:A Comparison of Catalysts Prepared by Sol-Gel, Solid-State Reaction and Solution-Combustion[J]. J Sol-Gel Sci Technol, 2018,86(3):719-730. doi: 10.1007/s10971-018-4680-4

    13. [13]

      Li L, Mao D S, Yu J. Highly Selective Hydrogenation of CO2 to Methanol over CuO-ZnO-ZrO2 Catalysts Prepared by a Surfactant-Assisted Co-precipitation Method[J]. J Power Sources, 2015,279(1):394-404.  

    14. [14]

      JIA Ruokun, ZHAO Guangyu, LIN Songzhu. Preparation of CuO-ZnO/Al2O3 Catalysts by Azeotropic Distillation Method and Its Influence on the Catalytic Performance[J]. Chinese J Appl Chem, 2015,32(5):570-575.  

    15. [15]

      Witoon T, Chalorngtham J, Dumrongbunditkul P. CO2 Hydrogenation to Methanol over Cu/ZrO2 Catalysts: Effects of Zirconia Phases[J]. Chem Eng J, 2016,293:327-336. doi: 10.1016/j.cej.2016.02.069

    16. [16]

      Chang K, Wang T F, Chen J G. Hydrogenation of CO2 to Methanol over CuCeTiOx Catalysts[J]. Appl Catal B-Environ, 2017,206:704-711. doi: 10.1016/j.apcatb.2017.01.076

    17. [17]

      Azenha C S R, Mateos-Pedrero C, Queir s S. Innovative ZrO2-supported CuPd Catalysts for the Selective Production of Hydrogen from Methanol Steam Reforming[J]. Appl Catal B-Environ, 2017,203:400-407. doi: 10.1016/j.apcatb.2016.10.041

    18. [18]

      Zhang Y, Ye C L, Guo C L. In2O3-Modified Cu/SiO2 as an Active and Stable Catalyst for the Hydrogenation of Methyl Acetate to Ethanol[J]. Chinese J Catal, 2018,39(1):99-108. doi: 10.1016/S1872-2067(17)62932-2

    19. [19]

      Xu J H, Su X, Liu X Y. Methanol Synthesis from CO2 and H2 over Pd/ZnO/Al2O3:Catalyst Structure Dependence of Methanol Selectivity[J]. Appl Catal A-Gen, 2016,514:51-59. doi: 10.1016/j.apcata.2016.01.006

    20. [20]

      YU Jintao, CAO Jingshun, WEI Yongmei. Modification of Cu/SBA-15 Catalyst And Hydrogenation of Esters Catalyzed with the Same[J]. Petrochem Technol, 2019,48(6):531-538. doi: 10.3969/j.issn.1000-8144.2019.06.001

    21. [21]

      Zhu J J, Ma L R, Feng J. Facile Synthesis of Cu Nanoparticles on Different Morphology ZrO2 Supports for Catalytic Hydrogen Generation from Ammonia Borane[J]. J Mater Sci-Mater Electron, 2018,29(17):14971-14980. doi: 10.1007/s10854-018-9635-6

    22. [22]

      CHEN Lin. On the Gas-Phase Catalytic Hydrodechlorination of Chlorobenzene and 1, 2-Dichloroethane over Supported Catalysts[D]. Nanjing: Nanjing University, 2014(in Chinese). 

    23. [23]

      Witoon T, Kidkhunthod P, Chareonpanich M. Direct Synthesis of Dimethyl Ether from CO2 and H2 over Novel Bifunctional Catalysts Containing CuO-ZnO-ZrO2 Catalyst Admixed with WOx/ZrO2 Catalysts[J]. Chem Eng J, 2018,348:713-722. doi: 10.1016/j.cej.2018.05.057

    24. [24]

      Cheng J, Xuan X X, Yang X. Selective Reduction of CO2 to Alcohol Products on Octahedral Catalyst of Carbonized Cu (BTC) Doped with Pd Nanoparticles in a Photoelectrochemical Cell[J]. Chem Eng J, 2019,358:860-868. doi: 10.1016/j.cej.2018.10.091

    25. [25]

      Din I U, Shaharunb M S, Naeem A. Carbon Nanofibers Based Copper/Zirconia Catalysts for Carbon Dioxide Hydrogenation to Methanol:Effect of Copper Concentration[J]. Chem Eng J, 2018,334:619-629. doi: 10.1016/j.cej.2017.10.087

    26. [26]

      Zhu H W, Razzaq R, Li C S. Catalytic Methanation of Carbon Dioxide by Active Oxygen Material CexZr1-xO2 Supported Ni Co Bimetallic Nanocatalysts[J]. AIChE J, 2013,59(7):2567-2576. doi: 10.1002/aic.14026

    27. [27]

      Shi Z S, Tan Q Q, Wu D F. Ternary Copper Cerium Zirconium Mixed Metal Oxide Catalyst for Direct CO2 Hydrogenation to Methanol[J]. Mater Chem Phys, 2018,219:263-272. doi: 10.1016/j.matchemphys.2018.08.038

    28. [28]

      Andrés G T, Anna R, Edward R W. PdIn Intermetallic Nanoparticles for the Hydrogenation of CO2 to Methanol[J]. Appl Catal B-Environ, 2018,220:9-18. doi: 10.1016/j.apcatb.2017.07.069

    29. [29]

      Wang G, Mao D S, Guo X M. Enhanced Performance of the CuO-ZnO-ZrO2 Catalyst for CO2 Hydrogenation to Methanol by WO3 Modification[J]. Appl Surf Sci, 2018,456:403-409. doi: 10.1016/j.apsusc.2018.06.090

    30. [30]

      Dasireddy V D B C, Neja S Š, Blaž L. Correlation Between Synthesis pH, Structure and Cu/MgO/Al2O3 Heterogeneous Catalyst Activity and Selectivity in CO2 Hydrogenation to Methanol[J]. J CO2 Util, 2018,28:189-199. doi: 10.1016/j.jcou.2018.09.002

    31. [31]

      Ben S G, Yuan F L, Zhu Y J. Effect of Zr Addition on Catalytic Performance of Cu-Zn-Al Oxides for CO2 Hydrogenation to Methanol[J]. Chem Res Chinese Uinv, 2016,32(6):1005-1009. doi: 10.1007/s40242-016-6130-6

    32. [32]

      Ezeh C I, Yang X G, He J. Correlating Ultrasonic Impulse and Addition of ZnO Promoter with CO2 Conversion and Methanol Selectivity of CuO/ZrO2 Catalysts[J]. Ultrason Sonochem, 2018,42:48-56. doi: 10.1016/j.ultsonch.2017.11.013

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    3. [3]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    4. [4]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    5. [5]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    6. [6]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    7. [7]

      Tiejun Su . The Construction and Application of the Calculation Formula for Endpoint Error in Precipitation Titration: A Case Study of the Mohr Method. University Chemistry, 2024, 39(11): 384-387. doi: 10.12461/PKU.DXHX202402039

    8. [8]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    9. [9]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    10. [10]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    11. [11]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    12. [12]

      Xinxue Li . The Application of Reverse Thinking in Teaching of Boiling Point Elevation and Freezing Point Depression of Dilute Solutions in General Chemistry. University Chemistry, 2024, 39(11): 359-364. doi: 10.3866/PKU.DXHX202401075

    13. [13]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    14. [14]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    15. [15]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    16. [16]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    17. [17]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    18. [18]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    19. [19]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    20. [20]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

Metrics
  • PDF Downloads(11)
  • Abstract views(531)
  • HTML views(115)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return