Citation: HE Bing, ZHONG Xinxin, RAN Kai, FENG Qiang, YU Dengbin, HAN Tao, LI Zhonghui, YU Luoting. Synthesis and Antitubercular Activity of Nitrofuran-Methylene Piperidine Compounds[J]. Chinese Journal of Applied Chemistry, ;2020, 37(2): 134-143. doi: 10.11944/j.issn.1000-0518.2020.02.190206 shu

Synthesis and Antitubercular Activity of Nitrofuran-Methylene Piperidine Compounds

  • Corresponding author: HE Bing, hebing@cdnu.edu.cn
  • Received Date: 22 July 2019
    Revised Date: 21 October 2019
    Accepted Date: 22 October 2019

    Fund Project: Supported by the Foundation of Applied Basic Research Project of Sichuan Provincial Science and Technology Department(No.2018JY0262), and the National Undergraduate Innovation and Entrepreneurship Training Project(No.201714389055)the Foundation of Applied Basic Research Project of Sichuan Provincial Science and Technology Department 2018JY0262the National Undergraduate Innovation and Entrepreneurship Training Project 201714389055

Figures(2)

  • Tuberculosis is a chronic respiratory infectious disease caused by Mycobacterium tuberculosis and a serious threat to the health of people around the world. In the previous work, we adopted the strategy of combinatorial chemistry, combining the group nitrofuran and phenyl-thiazole, to generate a series of new compounds with high antitubercular activity. In this work, a methylene-piperidine group was introduced and used to replace the original amide bridge moiety to produce new derivatives 2-(1-((5-nitrofuran-2-yl)methyl)piperidin-4-yl)thiazole (5) and 2-(1-((5-nitrofuran-2-yl)methyl) piperidin-4-yl)-4-phenylthiazole (6). In total, 19 compounds were synthesized and then the inhibition rate against Mycobacterium tuberculosis H37Ra was tested at the concentration of 1 μmol/L and 0.1 μmol/L. Based on the structure-activity relationship analysis, we found that the substitution on the benzene ring is beneficial to the activity improvement, furthermore, the para substitution is better than the meta and ortho substitution, and the electron-withdrawing group in the para position is better than the electron-donating group. In the para substitution of electron-withdrawing groups, -CF3 substituted compound 2-(1-((5-nitrofuran-2-yl)methyl)piperidin-4-yl)-4-(4-(trifluoromethyl)phenyl)thiazole (6f) had the highest antitubercular activity, and the inhibition rates reached 99.6% and 93.4% at the concentration of 1 μmol/L and 0.1 μmol/L, respectively. Due to the high antitubercular activity of compound 6f, it can be further developed as an antitubercular candidate compound.
  • 加载中
    1. [1]

      Patterson S, Wyllie S. Nitro Drugs for the Treatment of Trypanosomatid Diseases:Past, Present, and Future Prospects[J]. Trends Parasitol, 2014,30(6):289-298. doi: 10.1016/j.pt.2014.04.003

    2. [2]

      Mukherjee T, Boshoff H. Nitroimidazoles for the Treatment of TB:Past, Present and Future[J]. Future Med Chem, 2011,3(11):1427-1454. doi: 10.4155/fmc.11.90

    3. [3]

      Kmentova I, Sutherland H S, Palmer B D. Synthesis and Structure-Activity Relationships of Aza- and Diazabiphenyl Analogues of the Antitubercular Drug (6S)-2-Nitro-6-{[J]. J Med Chem, 2010,53(23):8421-8439. doi: 10.1021/jm101288t

    4. [4]

      Matsumoto M, Hashizume H, Tomishige T. OPC-67683, A Nitro-Dihydro-Imidazooxazole Derivative with Promising Action Against Tuberculosis in Vitro and in Mice[J]. PLoS Med, 2006,3(11):2131-2144.  

    5. [5]

      Ryan N J, Lo J H. Delamanid:First Global Approval[J]. Drugs, 2014,74(9):1041-1045. doi: 10.1007/s40265-014-0241-5

    6. [6]

      Denny W A. TBA-354:A New Drug for the Treatment of Persistent Tuberculosis[J]. Chem New Zeal, 2015,1:18-22.

    7. [7]

      Makarov V, Manina G, Mikusova K. Benzothiazinones Kill Mycobacterium Tuberculosis by Blocking Arabinan Synthesis[J]. Science, 2009,324(5928):801-804. doi: 10.1126/science.1171583

    8. [8]

      Magnet, Hartkoorn, Sz, R. Leads for Antitubercular Compounds from Kinase Inhibitor Library Screens[J]. Tuberculosis, 2010,90(6):354-360. doi: 10.1016/j.tube.2010.09.001

    9. [9]

      Christophe T, Jackson M, Jeon H K. High Content Screening Identifies Decaprenyl-Phosphoribose 2' Epimerase as a Target for Intracellular Antimycobacterial Inhibitors[J]. PLoS Pathog, 2009,5(10)e1000645. doi: 10.1371/journal.ppat.1000645

    10. [10]

      Magnet S, Hartkoorn R C, Székely R. Leads for Antitubercular Compounds from Kinase Inhibitor Library Screens[J]. Tuberculosis, 2010,90(6):354-360. doi: 10.1016/j.tube.2010.09.001

    11. [11]

      Stanley S A, Grant S S, Kawate T. Identification of Novel Inhibitors of M. Tuberculosis Growth Using Whole Cell Based High-Throughput Screening[J]. ACS Chem Biol, 2012,7(8):1377-1384. doi: 10.1021/cb300151m

    12. [12]

      FU Guo, LI Ningyi. Research Progress on Nitrofurans and Nitroimidazoles[J]. J Qingdao Univ Med College, 2003,39(4):486-488. doi: 10.3969/j.issn.1672-4488.2003.04.056

    13. [13]

      Tangallapally R P, Yendapally R, Lee R E. Synthesis and Evaluation of Nitrofuranylamides as Novel Antituberculosis Agents[J]. J Med Chem, 2004,47(21):5276-5283. doi: 10.1021/jm049972y

    14. [14]

      Tangallapally R P, Yendapally R, Lee R E. Synthesis and Evaluation of Cyclic Secondary Amine Substituted Phenyl and Benzyl Nitrofuranyl Amides as Novel Antituberculosis Agents[J]. J Med Chem, 2005,48(26):8261-8269. doi: 10.1021/jm050765n

    15. [15]

      Ran K, Gao C, Deng H. Identification of Novel 2-Aminothiazole Conjugated Nitrofuran as Antitubercular and Antibacterial Agents[J]. Bioorg Med Chem Lett, 2016,26(15):3669-3674. doi: 10.1016/j.bmcl.2016.05.088

    16. [16]

      Yempalla K R, Munagala G, Singh S. Nitrofuranyl Methyl Piperazines as New Anti-TB Agents:Identification, Validation, Medicinal Chemistry, and PK Studies[J]. ACS Med Chem Lett, 2015,6(10):1041-1046. doi: 10.1021/acsmedchemlett.5b00141

  • 加载中
    1. [1]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    2. [2]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    3. [3]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    4. [4]

      Zongpei Zhang Yanyang Li Yanan Si Kai Li Shuangquan Zang . Developing a Chemistry Experiment Center Employing a Multifaceted Approach to Serve High-Quality Laboratory Education. University Chemistry, 2024, 39(7): 13-19. doi: 10.12461/PKU.DXHX202404041

    5. [5]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    6. [6]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    7. [7]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    8. [8]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    9. [9]

      Qin Tu Anju Tao Tongtong Ma Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062

    10. [10]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    11. [11]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

Metrics
  • PDF Downloads(4)
  • Abstract views(350)
  • HTML views(96)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return